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Abstract
The main objective of this thesis is to investigate a hierarchy of logical prin-
ciples not part of intuitionistic logic as developed by Akama et al. (2004).
Intuitionistic logic is a basis for constructive reasoning and the levels in the
hierarchy correspond to different degrees of non-constructivity.

One of the motivations for studying this hierarchy is a method suggested
by Hayashi et al. to test the formalisation of proofs. The domain of this
method is called “limit computable mathematics” and is characterised by the
hierarchy.

We shall show how a part of the hierarchy has equivalents in well-known
theorems of mathematical analysis, such as the intermediate value theorem
and the Bolzano-Weierstraß theorem.

A part of proof theory is concerned with the extraction of computational
information from classical proofs. This provides semi-constructive interpreta-
tions of the hierarchy and our work therefore results in precise calibration of
the general ineffectiveness of a series of theorems from mathematical practice.

Resumé
Dette speciales hovedformål er at undersøge et hierarki af ikke-intuitionist-
iske, logiske principper, der er udviklet af Akama et al. (2004). Intuitionistisk
logik er et grundlag for konstruktiv bevisførelse, og hierakiets niveauer svarer
til forskellige grader af ikke-konstruktivitet.

Én af motivationerne for at studere dette hierarki er en metode til at
teste formaliseringen af beviser, som er foreslået af Hayashi et al. Domænet
for denne metode kaldes “limit computable mathematics” og er karakteriseret
i hierarkiet.

Vi vil vise, hvordan en del af hierakiet, sat i en konstruktiv kontekst,
har ækvivalenter i velkendte sætninger fra matematisk analyse, som f.eks.
skæringssætningen og Bolzano-Weierstraß-sætningen.

En del af matematisk bevisteori forsøger at uddrage konstruktiv infor-
mation fra klassiske beviser. Dette giver en semi-konstruktiv fortolkning af
hierarkiet, og resultaterne i dette speciale leverer således præcise kalibreringer
af ikke-konstruktiviteten i en serie af konkrete matematiske sætninger.
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Chapter 1

Introduction

The aim of this thesis is to do a constructively based investigation of non-
constructivity in mathematical practice.

On the logical level, the difference between constructive and non-construct-
ive reasoning can in a suitable context be boiled down to one axiom; the
infamous Law of the Excluded Middle (LEM), A ∨ ¬A. By characterising
proofs in terms of the complexity of A in this axiom, we get a hierarchy that
can be used to “calibrate”1 the non-constructive strength of mathematical
theorems.

There are various scales for measuring the “calibre” of a mathematical
theorem, each with their own objectives. The one used in this project has
some rather new motivations, and therefore its results give, to our knowledge,
the first calibrations of their kind.

The main results are also gathered and discussed in [52].

1.1 Constructivism in Mathematics
We give a brief sketch of the history of mathematical constructivism. This is
to introduce some of the main characters in — and branches of — construc-
tivism, since we shall make occasional references to them.

Constructivism dates back far in mathematics. For instance, the Danish
historian of mathematics H.G. Zeuthen (1839–1920) suggested that the con-
structions in Euclid’s Elements were to be understood as existence proofs.2
Here we allow ourselves to skip to the beginning of the 20th century where
L.E.J. Brouwer (1881–1966) started developing an approach to mathematics

1The American Heritage Dictionary of the English Language, Fourth Edition: “To de-
termine the caliber of (a tube)”.

2However, modern history of mathematics tends to turn from this suggestion.
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that later became known as intuitionism. It was based on a basically solipsis-
tic philosophy of mathematics that viewed mathematical objects as creations
of the individual mind. Gradually Brouwer, almost solitarily, founded an in-
tuitionistic mathematics, and the main critique of classical mathematics may
be seen as condensed at two points: The classical interpretation of existence,
and the use of logic in general and LEM in particular.

Intuitionism identifies “to exist” with “to be constructed” and by the same
line of thought, viewing a disjunction as a binary existence statement, it
follows that LEM must be rejected, since one might not be able to decide
which of A and ¬A that holds.

A student of Brouwer, A. Heyting (1898–1980), carried out the first for-
malisation of intuitionistic arithmetic and thereby made intuitionism reach
a bigger audience. Though Brouwer’s intuitionism was far from captured in
Heyting’s formal system, the latter, quite surprisingly, did manage to express
the constructivistic characteristics of the more or less language-less philoso-
phy of intuitionism. Later more features of intuitionism were implemented in
the formalisation, for instance the so-called choice sequences, which Brouwer
used to prove the perplexing statement that “all total functions from R to R
are continuous”. The surprising result stems from the fact that intuitionism
is not a restriction of classical mathematics, but an orthogonal mathematical
theory.

In the sixties a classical, well-established mathematician E. Bishop (1928–
1983) developed a sympathetic new branch of constructive mathematics. He
used an intuitionistic logical basis as given by Heyting, and he did not make
any non-classical assumptions (such as axioms for choice-sequences). There-
fore his results could be read by both classical and intuitionistic mathemati-
cians; and due to the enormous amount of results in his first monograph on
the subject [4], this was, and is, indeed an interesting approach.

1.2 Motivations
In general, constructive mathematics has of course a close connection to com-
puter science, since a proof of an existence statement is required to include
a method for finding the object that is claimed to exist. For the formal con-
structive systems that we shall use here, one can verify that constructions
always give rise to recursive functions. A question of fundamental importance
is how this property is affected by allowing restricted use of classical logic.
And a second question like it is what amount of classical mathematics that
can be carried out under the restrictions.

In the next paragraphs we give some specific motivations for answering
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the latter question

Learning Theory and Limit Computable Mathematics. One aspect
of learning theory deals with a generalised notion of computability where a
function f is said to be limit computable if there is an effective method that
given n outputs a sequence of guesses from some stage on all will be f(n).
Limit Computable Mathematics (LCM) is a part of classical mathematics
that goes beyond constructive mathematics because it uses methods which
are ineffective. On the other hand, the ineffective methods are still, in a
certain sense, effective in the limit.

LCM was first motivated by an idea termed Proof Animation to test both
formal proofs under development and the formalisations of completed proofs.
Proof Animation tries to extract constructions (programs) from proofs and
then to look for bugs in them. Further research in the area of LCM has
characterised it in terms of Heyting’s arithmetic, which in turn has proposed
a more general investigation of a hierarchy of semi-classical logical principles.
In [15], [45] and [1] the research development in this area is described and
documented.

This thesis will aim at identifying the levels of the mentioned hierarchy
with actual mathematical practice and thereby investigate the scope of LCM.

Reverse Mathematics. The hierarchy from [1] can be seen as an ordering
of non-constructive proof methods. As such, another way of viewing the aim
of this thesis is as a classification of theorems of classical analysis by their
non-constructive strength.

Reverse mathematics is a metamathematical study of a series of formal
systems in which increasing parts of mathematics can be carried out. This
results in a classification of mathematical theorems, but in terms of axioms
of set-theory instead of principles of classical logic.

We shall see that the categorisation made in reverse mathematics is or-
thogonal to the one we present here, reflecting the phenomenon we mentioned
regarding intuitionistic and classical mathematics.

When a large part of mathematics has been fitted in to one of the basic
systems of reverse mathematics, insights in mathematical practice can be
gained by reflecting on the nature of the basic systems. For instance, weak
König’s lemma (WKL) — stating that an infinite binary tree has an infinite
branch — is seen to play an important role in analysis. Further analysis of
WKL reveals that it has interesting connections to recursion theory etc. It
turns out that WKL essentially can be expressed in a purely logical form,
which gives one of the principles that we shall study here.
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Proof Mining. Our classification of theorems is done by logical principles
and these principles are told apart by techniques of proof theory which ex-
tract the constructive information that the various principles carry. Thereby
the mathematical theorems get characterised by the amount of constructive
information that they preserve in proofs. A part of proof theory tries to
“unwind” concrete proofs, ie.

determine the constructive (recursive) content [. . . ] of the non-
constructive concepts and theorems used in mathematics.
(G. Kreisel, [36, p. 155])3

This part is called proof mining and was for semi-classical contexts introduced
in [30]. The classification we give in this thesis is of interest in proof mining,
since the technique used to separate the logical principles classifies them by
the amount of constructive content that one at least can unwind from a proof
in which the principle is used.

Constructivism and mathematics. It is a well-known fact that many
theorems of classical mathematics are inherently non-constructive. A general
motivation of constructive calibration is to measure how non-constructive
mathematical analysis is, and to isolate, in logical principles, the ineffective
modes of reasoning that are used in specific analytic proofs.

This will provide insights in mathematical practice. We shall see both that
it characterises mathematical non-constructivity in terms of natural axiom
instances from classical logic, and that it also points to logical principles that
apparently do not occur in a large part of mathematics as necessary axioms.

1.3 Thesis Structure
The report falls in three parts. The first part defines the context in which the
calibrations are to be performed and the logical, semi-classical principles that
are to be used. This also includes consideration of other possible contexts with
a justification for the actual choice that has been made. The first part ends
with Chap. 3 which introduces a number of so-called proof interpretations
that will be used for separating the logical principles.

The second part establishes the lower levels of the hierarchy and discusses
how to interpret the various logical principles. A small survey of some of the
related work then follows in Chap. 5.

The last three chapters are devoted to the actual calibrations, which nat-
urally fall in three pairs.

3Original emphasis has been removed.

8



Chapter 2

Setting up the Context

Most of the motivations mentioned in the introduction — here we have re-
verse mathematics, proof mining and constructivism in mind — leave impor-
tant choices regarding the context open to us. Systems resulting from many
of these choices have been studied previously; cf. Chap. 5 for an overview of
the work of relevance to this project. This chapter first give a discussion of
the chosen context and its motivation, and it will then describe the formal
context in some detail.

2.1 Motivating the Context
To motivate the context we first need to give a suitable characterisation of
limit computable mathematics.

2.1.1 Limit Computable Mathematics

It is known that proofs using only constructive means are in the scope of proof
animation. This seems reasonable by the intuitive content of “constructive”.
But it turns out that even for a more general class of proofs, it is possibly to
extract programs that can be used for proof animation. Limit Computable
Mathematics is such a class.

We say that f is the limit of the total recursive function g if ∃t0∀t ≥
t0f(x) = g(t, x). Stated in terms of the arithmetical hierarchy, a set is ∆0

2 iff
its characteristic function is the limit of a recursive function (cf. [48, 5.4]).

In [45], LCM is characterised by the formal theory which is obtained
by adding the classical logical axiom ¬¬∃x∀yA0(x, y) → ∃x∀yA0(x, y) (A0

quantifier-free) to the intuitionistic counterpart of Peano Arithmetic, which
is called Heyting Arithmetic HA. We denote this classical principle Σ0

2-DNE
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(Double Negation Elimination); which too is the name we shall use when
these notions get defined formally. Σ0

2-DNE is, as we shall see later, non-
constructive, but it is easy to see why it is limit-constructive: The task is to
come up with a function that, in the parameters, finds the x claimed to exist
in the conclusion of Σ0

2-DNE. We simply try to let x = 0 and go through the
y’s. If we find a y such that ¬A0(x, y) (which at each step can be checked,
since A0 is quantifier-free; cf. Sect. 2.2.2), we change our mind and instead
try x = 1, etc. This procedure is limit computable, since by the premise
of Σ0

2-DNE we are guaranteed that at some stage we find an x such that
∀yA0(x, y). However, this is (in general) not computable, for we might not
recognise the correct x.

In learning theoretic terms, the function realizing Σ0
2-DNE can be learned,

since only finitely many mind-changes are needed to find the correct answer.
It also corresponds to a very general type of learning, since we cannot even
compute a bound on how many revisions are needed.1

2.1.2 Context Choices

Based on the discussion above, we now describe some of the choices that have
resulted in the context we introduce in the following sections.

The first decision to make is on which logical, respectively non-logical, ax-
ioms and rules that are to be a part of the context. Apart from classical logic,
one might be interested in one of the refinements, linear logic and intuition-
istic logic. Linear logic is a resource sensitive approach, which keeps track of
how many times a hypothesis is used in the derivation of some conclusion.
This is, roughly speaking, achieved by disallowing general contractions and
weakenings.2 Especially in computer science, linear logic has found applica-
tions.

Both classical and linear logic may give rise to contexts that are also of
interest for proof theory and constructivity or computer science. However, for
the purpose of LCM, which has an intuitionistic core, it is far more natural
to work in an intuitionistic context.

As to the non-logical axioms, one might consider a system based on clas-
sical logic, but with only weak set-existence axioms, such as comprehension
and the axiom of choice, and restricting the available induction to thereby
have it be constructive in some sense. But on an intuitionistic basis, the
axiom of choice, at least its countable restriction, is harmless since it only

1[1] has a discussion of the various kinds of learning and their relation to some of the
semi-classical principles that will be examined in the later chapters.

2Contraction is expressed by the axioms A → A ∧ A and A ∨ A → A. For weakening,
cf. the axiom list on p. 12.
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makes the constructive interpretation of the quantifiers explicit. Still, we will
be explicit when using the axiom of choice. Restricted induction is useful
for the study of sub-recursive fragments of both classical and intuitionistic
systems, but again, since induction is unproblematic in LCM, we allow full
induction.

The next issue we discuss is what we are going to consider an instance
of an axiom schema or mathematical principle. For an informal illustration,
consider the Σ0

1-LEM schema,

∃x(t(x, y) = 0) ∨ ¬∃x(t(x, y) = 0) .

It is enough to consider matrices3 of this simple kind since the systems we use
reduce quantifier-free formulas to equality test between terms. And as usual,
blocks of quantifiers can be coded together such that it is only necessary to
consider formulas with alternating quantifiers.

In a higher-order4 setting with the axiom of choice, we could from Σ0
1-LEM

prove the existence of a function f such that

∀y∃x(t(x, y) = 0) ↔ ∀y(t(f(y), y) = 0) ;

that is, f absorbs an ∃-quantifier. This may be iterated to get A ∨ ¬A for
any arithmetical A, hence full classical logic for any arithmetical formulas. To
precisely calibrate the scope of LCM, we need somehow block the possibility
of such iteration, since, as will be clear later, Σ0

2-DNE implies Σ0
1-LEM and

is, in a certain sense, the strongest principle that has a limit computable
realizer. We do this by only allowing instances to be given by terms with
parameters of number-type.

2.2 Formal Context
The purpose of this section is to set up the formal context in which this
project works.

2.2.1 Intuitionistic Predicate Logic

We begin by describing intuitionistic predicate logic (IL) — our aim is not
to give an introduction to predicate logic as such. We shall therefore be brief

3The matrix is the formula part following the explicit quantifiers. We shall not need a
more formal definition.

4The higher-order context that we will use is conservative over HA, [54, 3.6.2].
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and adopt the usual conventions concerning notation, naming of variables,
omission of parenthesis etc. Details on this can be found in [2] and [54, 1.1].

As logical connective we have ∧,∨, ∃, ∀,→,⊥.5 We use the abbreviations
¬A :≡ A → ⊥ and A ↔ B :≡ (A → B) ∧ (B → A).

Recall that terms are expressions built up from variables, constants and
function symbols; atomic formulas are built up from terms and equality and
relation symbols of the language. For a definition of “formulas”, “free vari-
ables” etc. we again refer to [2].

The proof system we use is a so-called Hilbert-type system (ie. it is based
on axioms and inference rules, as opposed to, for instance, “sequent calculi”
and “natural deduction systems”) suggested by Spector as given in [54, 1.1.3].

Axioms of IL.

(i) A → A.

(ii) A ∧ B → A , A ∧ B → B.

(iii) A → A ∨ B , B → A ∨ B (weakening).

(iv) ⊥ → A (ex falso quodlibet).

(v) ∀xA(x) → A(t), if t is substitutable for x in A.6

(vi) A(t) → ∃xA(x), if t is substitutable for x in A.

Inference Rules of IL.

(i)
A A → B

B
(modus ponens) .

(ii)
A → B B → C

A → C
(syllogism) .

(iii)
A → C B → C

A ∨ B → C
,

A → B A → C

A → B ∧ C
.

(iv)
A ∧ B → C

A → (B → C)
,

A → (B → C)

A ∧ B → C
.

5Pronounced “and”, “or”, “there exists”, “for all”, “implies”, “absurdity”.
6That is, no variable in t becomes bound after the substitution.
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(v)
B → A(x)

B → ∀xA(x)
,

A(x) → B

∃xA(x) → B
, where x is not free in B.

We write IL 
 for deducibility in the calculus above. If we add further axioms
Γ to the calculus, deducibility is then denoted IL + Γ 
. As in most other
reasonable proof systems, the deduction theorem is valid in the Hilbert style
calculus we use.

Theorem 2.1. For any set of axioms Γ and any closed formula A, we have

IL + Γ ∪ {A} 
 B ⇒ IL + Γ 
 A → B .

Example 2.2. As an example of a derivation we show the following,
B → (¬B → C).

⊥ (iv)→ C

B ∧ ¬B
(i)→ B ∧ ¬B B ∧ ¬B

(ii)→ B(iii)
B ∧ ¬B → [B ∧ ¬B] ∧ B

B ∧ ¬B
(ii)→ (B → ⊥)

(iv)
[B ∧ ¬B] ∧ B → ⊥

(ii)
B ∧ ¬B → ⊥ (ii)

B ∧ ¬B → C(iv)
B → (¬B → C)

Note that this proof tree incorporates a deduction of ¬(B ∧ ¬B).
Once we have the deduction theorem, IL 
 B → (¬B → C) can be derived

more intuitively: By the deduction theorem (applied twice) it is enough to
show IL + {B,¬B} 
 C.

B ¬B(i) ⊥ ⊥ (iv)→ C (i)
C

For the historically interested, the just derived formula is the main difference
between Heyting’s formalisation of intuitionistic logic and A.N. Kolmogorov’s
(1903–1987) preceeding and partial ditto. Kolmogorov argues that the prin-
ciple “does not have and cannot have any intuitive foundation since it asserts
something about the consequences of something impossible: we have to ac-
cept [C] if the true judgement [B] is regarded as false”7.

7[35, II §4].
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Basic Properties. We give a list of some theorems that are all derivable
in IL to give the reader some impression of what can and what cannot be
done in an intuitionistic setting.

1. A → ¬¬A

2. ¬A ↔ ¬¬¬A

3. ¬(A ∨ B) ↔ ¬A ∧ ¬B

4. ¬A ∨ ¬B → ¬(A ∧ B)

5. (¬¬A ∧ ¬¬B) ↔ ¬¬(A ∧ B)

6. (A → B) → (¬B → ¬A)

7. (¬¬A → ¬¬B) ↔ ¬¬(A → B) and ¬¬(A → B) ↔ (A → ¬¬B)

8. ¬∃xA(x) ↔ ∀x¬A(x)

9. ∃x¬A(x) → ¬∀xA(x)

10. ¬¬∀xA(x) → ∀x¬¬A(x)

11. ∀x(A(x) → B) ↔ (∃xA(x) → B)

12. ∃x(A(x) → B) → (∀xA(x) → B)

13. ∀x(B → A(x)) ↔ (B → ∀xA(x))

14. ∃x(B → A(x)) → (B → ∃xA(x))

Proofs and an extended list can be found in [8, 5.2].

The Excluded Axiom. Adding the axiom schema

(vii) A ∨ ¬A (tertium non datur),

to the list of axioms results in a formalisation of classical logic. Thus, we
refind the curious fact that the difference between constructive and classical
reasoning can be isolated in exactly one axiom (if we for the moment believe
that intuitionistic logic corresponds to constructive reasoning).

We shall use the acronym LEM for the axiom, referring to (one of) its
English name(s) — Law of the Excluded Middle. This, in turn, refers to the
interpretation of LEM that for a formula A there are only two possibilities,
either A is valid or else ¬A is valid; there is nothing between the two. Note
that from 3. in the list above and Example 2.2, one finds that IL 
 ¬¬(A ∨
¬A).

Alternatively we could have added the schema

14



(vii′) ¬¬A → A.

This would again give a formalisation of classical logic. We shall denote this
schema DNE, which is an acronym for Double Negation Elimination.

2.2.2 Heyting Arithmetic

This section describes the intuitionistic first-order theory of arithmetic, Heyt-
ing arithmetic (HA), which is the intuitionistic counterpart of Peano arith-
metic (PA); ie. HA and PA have the same language and non-logical axioms.
We denote primitive recursive arithmetic, which is PA with only quantifier-
free induction, with PRA.

The language of HA contains the constant symbol 0, a unary function
symbol S (the successor), function symbols for all primitive recursive func-
tions and equality = as a binary predicate.

Non-Logical Axioms of HA.

Equality axioms. x = x, x = y ∧ z = y → x = z. And for every n-ary
function constant f , x = y → f(x) = f(y).8

Successor axioms. S(x) = 0, S(x) = S(y) → x = y.

Defining axioms for the primitive recursive functions.

Induction axiom (IA). The induction schema9

A(0) ∧ ∀x(A(x) → A(S(x))) → ∀xA(x) .

The usual pairing and coding of finite sequences can be carried out in HA
and we use 〈m, n〉 to denote the code of the tuple consisting of m and n. We
shall use sg(·) for the sign (or signum) function (sg(0) = 0, sg(n + 1) = 1)
and sg for its complement (sg(0) = 1, sg(n + 1) = 0).

Any quantifier-free formula is equivalent to an atomic formula and they
are decidable; ie. the quantifier-free instances of LEM are provable in HA.

8We underline variables to denote finite tuples, x ≡ x1, . . . , xn. Equality between tuples
are taken componentwise.

9The schematic letter A stands for any formula of the language of HA. Ie. restrictions
as the one mentioned in Sect. 2.1 are not made here.
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2.2.3 Heyting Arithmetic in All Finite Types

This section extends HA to an intuitionistic theory dealing with objects of
higher types. Among several established systems doing this we have chosen
HAω from [54, 1.6.15]. It has mainly been studied in relation with Gödel’s
functional interpretation (cf. Sect. 3.3), but has the, for our purpose, useful
properties that it is the weakest system10 and can be used throughout all of
this project.

We shall use PAω for the classical variant of HAω.

The Type Structure T. The set of finite types T is defined inductively
by the rules

(i) 0 ∈ T.

(ii) If σ, τ ∈ T, then (σ → τ) ∈ T.

0 is the type of the natural numbers. Functions from type σ to τ are of type
σ → τ . The usual convention that “→” between types binds to the right is
adopted here, such that ρ�σ � τ is ρ� (σ � τ). We assign natural numbers
to the so-called pure types; 1 denotes (0 → 0) and n + 1 denotes (n → 0).

We use deg(τ) to denote the degree of a type τ :

deg(0) = 0 ,

deg(σ�τ) = max{deg(σ) + 1, deg(τ)} .

Language of HAω. HAω is based on many-sorted11 intuitionistic predicate
logic. That is, for each type τ (sort) there are variables xτ , yτ , zτ , . . .. The
language of HAω contains the constant 00 (zero, of type 0), S1 (successor
of type 1), Πσ,τ (projector of type σ � τ � σ), Σρ,σ,τ (combinator of type
(ρ�σ�τ)�(ρ�σ)�ρ�τ) and Rτ (recursor of type 0�τ �(τ �0�τ)�τ).
Finally there is a binary equality predicate =0 between objects of type 0.

The terms of HAω are defined by two clauses:

1. Constants and variables are terms
2. If s is a term of type σ and t is a terms of type σ � τ , then t(s) is a

term of type τ .

Instead of t(s)(r) we shall simply write t(s, r) etc.
10It is contained in both N-HAω and WE-HAω from [54].
11Cf. [2, 5.1].
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Non-logical Axioms of HAω.

Equality axioms for =0.

Successor axioms as above.

Induction schema as above (with instances to be taken from the new lan-
guage).

Substitutivity schemata. For type 0 objects,

x0 = y0 → t[x0] = t[y0] ,

and the following for terms t of type 0,

t[Π(x, y)] = t[x]

t[Σ(x, y, z)] = t[x(z, y(z))]

t[R(0, y, z)] = t[y]

t[R(S(x), y, z)] = t[z(R(x, y, z), x)] .

Useful properties of HAω. The λ operator is definable in HAω and sub-
stitutivity gives for t of type 0: t[(λxτ .t′[x])(t′′)] = t[t′[t′′]].

HA is a a subsystem of HAω in the sense of [54, 1.6.9]. And in this sense,
HAω is conservative over HA, [54, 3.6.2].

Models of HAω HAω does not commit itself to either of the two interpre-
tations of equality in higher types; intensional and extensional equality. The
intensional interpretation is that two objects of higher types are equal if they
are given by the same “rule”, and equality between “rules” is thought to be
decidable. In contrast, objects are said to be extensionally equal if they give
the same values on equal arguments.

One model reflecting intensional equality is HRO (Hereditarily Recursive
Operations), which at type 1 consists of the total recursive functions with
equality taken to be equality of the codes. A model in the same spirit but
reflecting extensional equality is HEO (Hereditarily Effective Operations),
which at type 1 again are the total recursive functions, but two functions are
equal if they “output” the same natural numbers on equal number “inputs”.

Definitions of HRO and HEO are given in [54, 2.4].

17



The weakness of HAω is reflected by the fact that both HRO and HEO
are models of HAω. This calls for some caution when working with HAω as
the basic proof system since very natural modes of reasoning based on the
extensional interpretation of equality cannot be carried out in HAω. This
has practical relevance since proofs in HAω hardly ever are written as formal
proof trees, but instead at a convincing level of detail that show how a formal
proof would go. That is, there are some gaps in which one could suspect uses
of extensionality to reveal itself under formalisation. However, since results
in this thesis at most involve types of degree ≤ 1, extensionality turns out
not to be a problematic issue:

By applying elimination of extensionality from [40] we get that adding
extensionality to HAω is conservative for formulas with all variables of degree
≤ 1, since functions of type 1 are provably extensional in HAω.

2.2.4 Higher Type Relations

Definition 2.3. For any type τ we inductively define x ≥τ y between objects
of type τ .

x ≥0 y :≡ x ≥ y ,

x ≥σ�τ y :≡ ∀zσ (x(z) ≥τ y(z)) .

Definition 2.4. For any type τ we define a relation x majτ y (x majorizes
y) between objects of type τ inductively on τ .

x maj0 y :≡ x ≥ y ,

x majσ�τ y :≡ ∀zσ
1 , zσ

2 (z1 majσ z2 → x(z1) majτ y(z2)) .

Theorem 2.5 (W. A. Howard [19]). For any closed term tρ of HAω, there
exists a closed term t′ρ such that

HAω 
 t′ majρ t .

2.3 Logical and Set-Theoretical Principles
This section defines the logical principles that will be used for the actual
calibrations of the final part of the thesis. Also a few set-theoretical principles
are given, in particular the axiom of choice.

Definition 2.6. We say that a formula A of HAω is ∃-free if it is built up
from atomic formulas by only ∧, → and ∀; that is, A neither contains ∃ nor
∨.
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Definition 2.7. Let t be a term of HA representing a type 1 function and
n a natural number. We define the following two formulas with alternating
quantifiers

(i) Σ0
n(t) :≡ ∃k1∀k2 . . .Qkn(t(k1, k2, . . . , kn) = 0) , where Q is ∃ if n is

odd, ∀ if n is even.

(ii) Π0
n(t) :≡ ∀k1∃k2 . . .Qkn(t(k1, k2, . . . , kn) = 0) , where Q is ∀ if n is

odd, ∃ if n is even.

By Σ0
n (Π0

n) we refer to the class of all Σ0
n(t) (Π0

n(t)) instances with t being a
term of HA. We shall informally use ∆0

1 to denote the class of formulas that
(provably) can be written both as a Σ0

1 and a Π0
1 formula.

Having defined the two fundamental classes of formulas above, we proceed by
restricting classical logical principles to these classes and thereby obtaining
three important series of schemata. An instance of some schema S is given
by a term t in HA, possibly with number parameters. In this way ∀xS(t[x])
is an instance of S. However, function parameters are not allowed.

Definition 2.8. The Law of the Excluded Middle principle for Σ0
n respec-

tively Π0
n formulas is given by:

Γ0
n-LEM(t) :≡ Γ0

n(t) ∨ ¬Γ0
n(t) ,

where Γ is one of Σ and Π.

The more vivid name ‘principle of omniscience’ was introduced in [4] for
the full LEM principle, and ‘limited principle of omniscience’ (LPO) for a
principle stating:

If {an} is any decision sequence [ie. a nondecreasing sequence of
0’s and 1’s], then either all an = 0 or some an = 1.

Furthermore the term ‘weak limited principle of omniscience’ (WLPO) is
used in [41] for the principle:

If {an} is any decision sequence, then either all an = 0 or it is
contradictory that some an = 1.

The restriction to decision sequences is inessential, and one therefore notices
the resemblance to the schemata Σ0

1-LEM and Π0
1-LEM. The difference is

that the omniscience principles traditionally are allowed to have function
parameters when considered in Bishop’s constructive mathematics.
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Definition 2.9. The Double Negation Elimination principle for Σ0
n respec-

tively Π0
n formulas is given by

Γ0
n-DNE(t) :≡ ¬¬Γ0

n(t) → Γ0
n(t) .

Remark 2.10. Π0
n+1-DNE is equivalent to Σ0

n-DNE in HA and Π0
1-DNE is prov-

able in HA since HA 
 ¬¬∀kA(k) → ∀k¬¬A(k), wherefore we shall only
consider instances of Σ0

n-DNE.
For historical reasons Σ0

1-DNE is also known as Markov’s principle, see
Sect. 4.1.1. The principle is generalised in higher types by the following.

Definition 2.11. Let

Mτ : ¬¬∃xτA0(x) → ∃xτA0(x) ,

for A0 quantifier-free. Define Markov’s principle in all finite types Mω :≡⋃
τ∈T{Mτ}.

Definition 2.12. The Lesser Limited Principle of Omniscience for Σ0
n for-

mulas is given by

Σ0
n-LLPO(t1, t2) :≡ ¬(Σ0

n(t1) ∧ Σ0
n(t2)) → Π0

n(sg(t1)) ∨ Π0
n(sg(t2)) .

The principle is named after the principle LLPO from constructive math-
ematics. In [20] LLPO reads as follows

given any [decision sequence {an}] either a2n = 0 for all n, or else
a2n+1 = 0 for each n.

The resemblance to Σ0
1-LLPO is clear. Note also the nondeterministic be-

haviour — in principle, both Π0
n(sg(t1)) and Π0

n(sg(t2)) might hold, and in
such a case the principle, per se, will not tell us so and is even free to chose
which of the disjuncts to point to.

Definition 2.13. The Independence-of-Premise principle for Σ0
n respectively

Π0
n premises is given by

Γ0
n-IP(t) :≡ (Γ0

n(t) → ∃lA(l)) → ∃l(Γ0
n(t) → A(l)) ,

where l ∈ FV(Γ0
n(t)) and A is an arbitrary formula.

We shall also need two higher-type Independence-of-Premise principles.
Let

IPσ,τ
∀ : (∀yσA0(y) → ∃xτB(x)) → ∃xτ (∀yσA0(y) → B(x))

IPτ
ef : (Aef → ∃xτB(x)) → ∃xτ (Aef → B(x)) ,

for A0 quantifier-free and Aef ∃-free and then define IPω
∀ :≡ ⋃σ,τ∈T{IPσ,τ

∀ } and
IPω

ef :≡ ⋃τ∈T{IPτ
ef}.
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Remark 2.14. Note that Γ0
n-IP follows from Γ0

n-LEM:
Suppose

Γ0
n(t) → ∃lA(l) . (2.1)

By Γ0
n-LEM we get

Γ0
n(t) ∨ ¬Γ0

n(t) .

So in the first case by (2.1) also ∃lA(l). For this l we get

Γ0
n(t) → A(l) ,

hence ∃l(Γ0
n(t) → A(l)). In the other case we get

Γ0
n(t) → A(0) ,

by B → (¬B → C) (Example 2.2). So in particular we have ∃l(Γ0
n(t) → A(l))

in either case.

Definition 2.15. The Comprehension Axiom schema for Σ0
n respectively Π0

n

formulas is given by

Γ0
n-CA(t) :≡ ∃f 1∀l(f(l) = 0 ↔ Γ0

n(t[l])) .

The following principle, which can be proved by induction in HA, will
become useful.

Definition 2.16. The Collection Principle CP is given by

∀a(∀x ≤ a∃yA(x, y) → ∃z∀x ≤ a∃y ≤ zA(x, y)) .

The Collection Principle can be viewed as a finite version of the Axiom
of Choice.

Definition 2.17. The Axiom of Choice ACσ,τ for type σ, τ is give by

∀xσ∃yτA(x, y) → ∃Y σ→τ∀xσA(x, Y (x)) .

Let AC :≡ ⋃σ,τ∈T{ACσ,τ}.

2.4 Analysis in HAω

We shall later study certain theorems of classical analysis. But so far our
formal system is still arithmetical. The purpose of the present section is to
make it possible to deal with more complex objects, such as rational and real
numbers and continuous functions.
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2.4.1 Real Numbers

We are going to represent real numbers as Cauchy sequences of rational
numbers converging with rate 2−n.

Rational numbers can be represented as pairs of natural numbers in such
a way that every natural number, interpreted as the code of a pair, represents
a rational number. Following [26] we take 〈n, m〉 to represent

n
2

m + 1
if n is even, and

−n+1
2

m + 1
if n is odd.

Furthermore, the basic relations and operations on rationals — =Q,≥Q, >Q,
+Q and ·Q (multiplication) — can be defined primitive recursively and their
basic properties can be verified in HA.

Real numbers are represented as Cauchy sequences of rationals with rate
2−n; hence, by the representation described above, number theoretic functions
f 1 satisfying

∀n0(|f(n) −Q f(n + 1)|
Q

<Q 2−n−1) . (2.2)

Here it is implicitly understood that “2−n−1” denotes a natural number which
is the representation of the actual rational number 2−n−1. Note that the
function which, given n, outputs the representation of the rational 2−n−1 is
easily defined by primitive recursion.

By iterating (2.2), we get the usual (fixed rate) Cauchy criterion,

∀n0∀k0, m0 ≥ n(|f(m) −Q f(k)|
Q

<Q 2−n) . (2.3)

Using a construction from [26, p. 48] we can make every type 1 func-
tion represent a real number, ie. quantification over reals is implemented as
quantification over type 1 functions: We define in HAω a term representing a
functional Φ such that

Φ(f) :≡ λn.f
(
µ k ≤ n

[
k = n ∨ |f(k) −Q f(k + 1)|

Q
≥Q 2−k−1

])
.

Then Φ(f) is always a Cauchy sequence (in the sense of (2.2)) and if already
f satisfied (2.2), then ∀n(f(n) = (Φ(f))(n)).

We write f̂ to denote Φ(f).
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Ordering. Equality on the representation of real numbers is defined by

f =R g :≡ ∀n
(
|f̂(n + 1) −Q ĝ(n + 1)|Q <Q 2−n

)
. (2.4)

In the same spirit, we have the following definitions.

f <R g :≡ ∃n(ĝ(n + 1) −Q f̂(n + 1) ≥Q 2−k) ,

f ≤R g :≡ ¬(f >R g) .

Note that =R, <R and ≤R are not quantifier-free, and in general not decid-
able. That equality on the representations corresponds exactly to equality be-
tween the real numbers represented follows using basic properties of Cauchy
sequences from analysis, or alternatively the next lemma; it states that if two
representatives have the same limit — in the sense that they get arbitrarily
close — then they are equal in the sense of (2.4) (that is, they get close even
with rate 2−n).

Lemma 2.18.

HAω 
 f =R g ↔ ∀k∃n∀m > n(|f̂(m) −Q ĝ(m)|Q <Q 2−k) .

Proof. Left to right follows from the properties of the ̂ construction and
(2.2). For the other direction, assume

∃n′(|f̂(n′ + 1) −Q ĝ(n′ + 1)|Q ≥Q 2−n′
) .

Then, by (2.2),

∃n′(|f̂(n′ + 2) −Q ĝ(n′ + 2)|Q >Q 2−n′−1) ,

and so,
∃n(|f̂(n + 1) −Q ĝ(n + 1)|Q ≥Q 2−n + q) ,

for some rational q >Q 0. By the ̂ construction and (2.3) we have,

∀m ≥ n + 1(|f̂(m) −Q f̂(n + 1)|Q <Q 2−n−1) ,

and the same for g. Hence,

∃n∀m ≥ n + 1(|f̂(m) −Q ĝ(m)|Q
=Q|f̂(n + 1) − ĝ(n + 1) − ĝ(m) + ĝ(n + 1) + f̂(m) − f̂(n + 1)|
>Q2−n + q − 2−n−1 − 2−n−1

=Qq) ,

which contradicts the implicative assumption. That is, we have proved ¬∃,
which implies ∀¬. Since the prime formulas are decidable in HA, we get the
f̂ =R ĝ.
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Basic Properties. The functions | · |R, +R and −R may be defined such
that

|f |R (n) := |f̂(n)|Q ,

(f +R g)(n) := f̂(n + 1) +Q ĝ(n + 1) ,

(f −R g)(n) := f̂(n + 1) −Q ĝ(n + 1) .

One easily gets the useful fact that a (representation of a) real number and
its k’th approximation are close by 2−k:

∀k
(∣∣∣f −R f̂(k)

∣∣∣
R

<R 2−k
)

.

Here we have introduced the convention that a rational r in an R-relation is
implicitly to be replaced by its trivial R-representation λn.r.

The operations and relations defined on representations provably satisfy
the usual axioms, and that they precisely reflect the corresponding operations
and relations on the real numbers that are represented. For instance, we have
the following.

Lemma 2.19. +R respects =R. That is,

HAω 
 f =R g ↔ f +R h =R g +R h .

And if f, g, h represent the real numbers x, y, z, then f +R g =R h if and only
if x + y = z.

Proof. For the first part, from left to right, we need to show that

∀n(|(f̂ +R h)(n + 1) − (ĝ +R h)(n + 1)| < 2−n) .

Since the definition of +R ensures that f + h is a Cauchy sequence with rate
2−n, f̂ +R h =1 f +R h. And so, the above easily follows from f =R g. For
the other direction we assume, by the same argument as above, that

∀n(|f̂(n + 2) − ĝ(n + 2)| < 2−n) .

And so, by Lemma 2.18, f =R g.
The second part follows again from basic facts of analysis: If f +R g =R h,

then the respective limits x, y, z of the corresponding (actual) rational se-
quences must satisfy x + y = z. On the other hand, if x + y = z, then
the (actual) rational sequences given by f + g and h must have the same
limit, and so, since f +R g is defined such that it is Cauchy with rate 2−n,
f +R g =R h as we saw in Lemma 2.18.
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We shall often use basic facts like

• ≤R is provably reflexive, antisymmetric and transitive.

• x <R y ∧ y ≤R z → x <R z and x ≤R y ∧ y <R z → x <R z.

• x <R y → x ≤R y.

The following expresses a consequence of the “apartness”-interpretation of
<R; two numbers being apart if there is a distance between them.

Lemma 2.20.
x >R y → ∃k(x >R y +R 2−k) .

Proof.

x >R y → ∃m(x(m + 1) −Q y(m + 1) ≥Q 2−m)

→ ∃m′(x(m′ + 1) −Q y(m′ + 1) >Q 2−m′
) (m′ = m + 1)

→ ∃m′, k(x(m′ + 1) −Q y(m′ + 1) >Q 2−m′
+Q 2−k)

→ ∃k(x >R y +R 2−k) .

2.4.2 Uniformly Continuous Functions C[0, 1]

We shall use the notation x ∈R [0, 1] to express that x1 represents a real
number in the interval [0, 1].

In classical analysis a continuous function f : [0, 1] → R is known to be
uniformly continuous and therefore have a modulus of uniform continuity ω1

f ;
ie. a number theoretic function satisfying

∀k0∀x, y ∈R [0, 1](|x −R y|R <R 2−ωf (k) → |f(x) −R f(y)|R <R 2−k) .

When given a uniformly continuous function, we will consider the modulus
as part of that data. When we have ωf , we can get back f from its restriction
fQ : [0, 1] ∩ Q → R. fQ is of type 0� (0� 0), and therefore it can be coded
as a type 1 function. In total, we can represent f as the tuple of fQ and ωf

— thus, elements in C[0, 1], the uniformly continuous functions defined on
[0, 1], will be represented as type 1 objects.

This choice of representation will serve two purposes. Firstly, it is possi-
ble to have every type 1 function represent an element in C[0, 1] and thereby
quantification over C[0, 1] can be reduced to quantification over type 1 ob-
jects. Secondly, having access to ωf allows one to define the supremum,
sup[0,1](f), of f ∈ C[0, 1] in HAω (using at most recursion of type R0). Both
issues are thoroughly described in the appendix of [29].
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Chapter 3

Proof Theory

This chapter introduces the proof theoretic tools that will be used later.
Proof theory is a mathematical study of formal mathematical proofs and

provability. Two of the main tasks of proof theory is

1. to analyse the proof-theoretic strength of given formal proof systems

2. to investigate what information can be extracted from proofs, other
than the truth of the theorem in question.

The proof-theoretic strength of a system is, in its broadest sense, given in
terms of the theorems provable in the system. Various classes of theorems
have been studied for the purpose of characterising the strength of a proof
system. Eg. theorems stating the totality of certain functions, or well-known
theorems of analysis.

In the fifties, G. Kreisel formulated the second task mentioned above as
follows.

What more do we know if we have proved a theorem by restricted
means than if we merely know that it is true?

Such information — the “more” we know — might be of (semi-) constructive
nature though the proof seems non-constructive. The branch of proof theory
concerned with the constructive content of actual mathematical proofs is, as
mentioned in the introduction, called proof mining.

3.1 Basic Translations
Here we give two simple proof theoretic methods that readily provide use-
ful information on HA. The first, negative translation, gives general insights
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into HA compared to its classical counterpart PA. We use the other proof
translation to prove one concrete result which will shed light on the status
of Markov’s principle as a semi-classical principle.

3.1.1 Negative Translation

There are several negative translations, which all provide a translation of
classical arithmetic into intuitionistic arithmetic. The one we present here is
from [39] and has a particularly simple formulation.

Definition 3.1. For a formula A of HA, we define the negative translation
by A′ :≡ ¬¬A∗, where A∗ is inductively defined as

(i) A∗ :≡ A, if A is atomic.

(ii) (A�B)∗ :≡ A∗�B∗, if � is one of ∨,∧,→.

(iii) (∃xA(x))∗ :≡ ∃xA∗(x).

(iv) (∀xA(x))∗ :≡ ∀x¬¬A∗(x).

Note that A and A′ are classically equivalent.
The main result for the negative translation is the following theorem.

Theorem 3.2 ([11, 12, 39]). Let A be a formula of HA. Then PA 
 A ⇐⇒
HA 
 A′.

So any theorem of PA may be stated in a classically equivalent way which
is a theorem of HA. In a certain sense, one might therefore say that intuition-
istic logic is not weaker than classical logic, but finer.

3.1.2 A-Translation

The A-Translation provides an elegant method for proving fundamental clo-
sure properties of HA, and has applications in connection with other proof
interpretations.

Definition 3.3. For a fixed formula A of HA, we inductively define the
formula BA for any B by

(i) BA :≡ B ∨ A, if B is atomic.

(ii) (B�C)A :≡ BA�CA, if � is one of ∨,∧,→.

(iii) (QxB(x))A :≡ QyBA(y), if Q is one of ∀, ∃ and y a variable not occur-
ring free in A.

27



The central property of the A-Translation is the following theorem.

Theorem 3.4 ([9, 10]). For any formula A of HA,

HA 
 B ⇒ HA 
 BA .

As a simple, yet important, use of the A-translation, we have give the
following theorem.

Theorem 3.5. HA is closed under the Markov rule, ie.: Let t[a] be some
term in HA with number parameters a then

HA 
 ¬¬∃n(t(n, a) = 0) ⇒ HA 
 ∃n(t(n, a) = 0) .

Proof. We leave out the parameter a for the sake of notational simplicity.
Assume HA 
 ¬¬∃n(t(n) = 0). Then by Theorem 3.4,

HA 
 (¬¬∃n(t(n) = 0))∃m(t(m)=0) .

Now, by the definition of ¬ and since ⊥ ∨ A ↔ A, we get

HA 
 [∃n
(
t(n) = 0 ∨ ∃m(t(m) = 0)

)→ ∃n(t(n) = 0)
]→ ∃n(t(n) = 0 ,

and so

HA 
 [(∃n(t(n) = 0) ∨ ∃m(t(m) = 0)
)→ ∃n(t(n) = 0)

]→ ∃n(t(n) = 0 .

By modus ponens and the schema A ∨ A → A, we get the result.

3.2 Realizability
The term “realizability” is used for a family of proof interpretations of which
the first, numerical realizability, was introduced by Kleene in [23], intended
to make the constructive interpretation of the logical operators explicit.

Kleene realizability interprets “constructive” (in arithmetic) as given by
a recursive method, which by Gödel numbering is just a natural number. It
therefore considers partial recursive functions. If we instead insist on only
realizing formulas by total functions, it is necessary to use higher type re-
cursion. Modified realizability is a realizability interpretation which explores
this direction; we present the interpretation below.
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3.2.1 Modified Realizability

Modified realizability was introduced in [38] and [37] made references to it,
motivating it by a proof of the underivability of Markov’s principle.

Definition 3.6. For formulas of HAω we define x mr A by induction on the
logical structure of A. x is a (possibly empty) tuple of variables not occurring
free in A, and the free variables of x mr A are among those of A and those
of x.

(i) If A is atomic, x mr A :≡ A, with x being the empty tuple.

(ii) x, y mr (A ∧ B) :≡ x mr A ∧ y mr B.

(iii) z0, x, y mr (A ∨ B) :≡ [(z = 0 → x mr A) ∧ (z = 0 → y mr B)].

(iv) x mr (A → B) :≡ ∀y(y mr A → xy mr B).

(v) x mr (∀yσA(y)) :≡ ∀y(xy mr A(y)).

(vi) zσ, x mr (∃yσA(y)) :≡ x mr A(z).

In the rest of this section ∆ will denote an arbitrary set of ∃-free formulas
(cf. Definition 2.6).

Theorem 3.7 (Soundness, [54, 3.4.5]).

HAω + AC + IPω
ef + ∆ 
 A ⇒ HAω + ∆ 
 t mr A ,

for some tuple of terms t with its free variables among the free variables of
A.

Theorem 3.8 (Program Extraction, [54, 3.4.8]). Let ∀xρ∃yσA(x, y) be
a closed formula of HAω. Then

HAω+AC+IPω
ef +∆ 
 ∀xρ∃yσA(x, y) ⇒ HAω+AC+IPω

ef +∆ 
 ∀xρA(x, t(x)) ,

where t is a closed term of HAω that can be extracted from the proof of
∀x∃yA(x, y).
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3.2.2 Monotone Modified Realizability

The soundness theorem of modified realizability (Theorem 3.7) is concerned
with the existence of realizers t, such that if ∀aA(a) is closed, we have
∀a(t(a) mr A(a)). Instead we could look for bounds (in terms of majoriz-
ability); ie., terms t′ such that

∃x(t′ maj x ∧ ∀a(x(a) mr A(a))) . (3.1)

We saw that the class of ∃-free formulas had already a modified realizability
interpretation. If we just consider extraction of bounds, saying that A(a) has
a monotone modified realizability interpretation if (3.1) is satisfied, then a
much larger class of formulas gets satisfied.1 We have the following theorem.

Theorem 3.9 ([30] and [34]). Let Γ be a set of closed formulas of the form
∃v ≤τ r¬B(v), where r is a tuple of closed terms with types given by τ . For a
formula A(x1, yσ) (with only x, y free) with deg(σ) ≤ 2 we have the following
rule

HAω + AC + IPω
ef + Γ 
 ∀x1∃yσA(x, y) ⇒

HAω + AC + IPω
ef + Γ 
 ∀x1∃y ≤σ t(x)A(x, y) ,

where t is a closed term of HAω.

We could instead let Γ be a set of formulas given with terms provably
satisfying their monotone modified realizability interpretation.

3.3 Functional Interpretation
This section introduces Gödel’s functional interpretation and a variant known
as monotone functional interpretation. Gödel’s results were originally pub-
lished in the journal Dialectica as [13], and the interpretation is therefore
also known as the Dialectica interpretation.

The relationship between monotone and regular functional interpretation
is much like that between monotone and regular modified realizability; in-
stead of actual “realizers”, bounds are extracted.

1That the class of formulas with a monotone modified realizability interpretation con-
tains that of formulas with a (regular) modified realizability interpretation is not quite
obvious, but relies heavily on Theorem 2.5.
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3.3.1 Gödel’s Functional (Dialectica) Interpretation

Definition 3.10. To each formula A of HAω we define a translation AD ≡
∃x∀yAD(x, y), where AD is a quantifier-free formula of HAω. The free vari-
ables of AD are among those of A and the (possibly empty) tuples x, y. When
we refer to a free variable of A, say z in A(z), then we write AD(x, y, z) for
AD.

( )D and ( )D are defined simultaneously by induction on the logical struc-
ture.

(i) AD ≡ AD ≡ A if A is atomic.

Let AD ≡ ∃x∀yAD(x, y) and BD ≡ ∃u∀vBD(u, v).

(ii) (A ∧ B)D ≡ ∃x, u∀y, v(AD(x, y) ∧ BD(u, v)).

(iii) (A ∨ B)D ≡ ∃z, x, u∀y, v[(z = 0 → AD(x, y)) ∧ (z = 0 → BD(u, v))].

(iv) (A → B)D ≡ ∃U, Y ∀x, v(AD(x, Y (x, v)) → BD(U(x), v)).

(v) (∃zA(z))D ≡ ∃z, x∀yAD(x, y, z).

(vi) (∀zA(z))D ≡ ∃X∀z, yAD(X(z), y, z).

The general idea is to use prenexing and AC in all inductive cases to
make the formula fit a ∃∀ pattern. This touches upon two issues that need
further explanation. The prenexing equivalences are, in general, not all valid
in intuitionistic logic, which questions the relationship between a formula and
its D-translation. Furthermore, it is not obvious how we choose a particular
prenexiation. The first issue will be addressed below in the discussion pre-
ceding Theorem 3.13, arguing that actually A ↔ AD is provable in a suitable
constructive system. To find this system, we will now turn to the second
issue by examining the only case of the definition which gives rise to use of
prenex rules that are not intuitionistically valid, namely (iv) implication. We
consider AD → BD.

(∃x∀yAD(x, y) → ∃u∀vBD(u, v))

↔ ∀x(∀yAD(x, y) → ∃u∀vBD(u, v))

IPω
∀↔ ∀x∃u(∀yAD(x, y) → ∀vBD(u, v))

↔ ∀x∃u∀v(∀yAD(x, y) → BD(u, v))

Mω↔ ∀x∃u∀v∃y(AD(x, y) → BD(u, v))

AC↔ ∃U, Y ∀x, v(AD(x, Y (x, v)) → BD(U(x), v))
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The justification of this prenexiation uses the principles Mω and IPω
∀ , which

are not intuitionistically accepted. However, both principles are very weak
— we have seen that IPω

ef , which implies IPω
∀ , has a modified realizability in-

terpretation, and Sect. 4.1.1 presents arguments that the type 0 restriction
of Mω, at least in itself, is, in a sense, constructive. That these principles
are weak enough to have a constructive interpretation, even when taken to-
gether,2 follows from Theorem 3.12.

Example 3.11. We give three examples. The two first are useful for the
use of functional interpretation in connection with negative translation. The
third example is one which we will refer to later.

(i) (¬A)D ≡ ∃Y ∀x¬AD(x, Y (x)).

(ii) (¬¬A)D ≡ ∃X∀Y ¬¬AD(X(Y ), Y (X(Y ))).

(iii) Consider A :≡ ∀x∃y∀zA0(x, y, z), for A0 quantifier-free. The negative
translation A′ of A is

¬¬∀x¬¬∃y∀z¬¬A0(x, y, z) ,

which over HA is equivalent to

∀x¬¬∃y∀zA0(x, y, z) ,

by the decidability of quantifier-free formulas in HA. We step by step
find the Dialectica interpretation (A′)D of A′.

[∀zA0(x, y, z)]D ↔ ∀zA0(x, y, z) .

[∃y∀zA0(x, y, z)]D ↔ ∃y∀zA0(x, y, z) .

[¬¬∃y∀zA0(x, y, z)]D ↔ ∃Y ∀ZA0(x, Y (Z), Z(Y (Z))) .

[∀x¬¬∃y∀zA0(x, y, z)]D ↔ ∃Y ∀x, ZA0

(
x, Y (x, Z), Z(Y (x, Z))

)
.

Theorem 3.12 (Soundness, [54, 3.5.4–3.5.5]). For a formula A(a) of
HAω with only a free, and Π a set of purely universal, closed formulas ∀xρB0(x)
(B0 quantifier-free of HAω) we have the following rule.

HAω + AC + IPω
∀ + Mω + Π 
 A(a) ⇒

HAω + Π 
 AD(t(a), y, a) ,

where t is a tuple of closed terms of HAω.
2Which IPω

ef and Mω do not satisfy; [22, 5.4–5.5] discusses this.
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The original paper [13] by Gödel had HA in the premise of the soundness
theorem. The higher type extension with the principles IPω

∀ and Mω appears
first in [57]. For some historical remarks on the functional interpretation
cf. [53].

For our applications of the functional interpretation (ie. its soundness
theorem) it is essential that it is possible to get back the original formula from
its D-translation. In this respect, implication is of interest for two reasons.
One might hope to give an induction proof of a lemma of the form Hω 
 AD →
A, for a suitable system Hω — in our case HAω seems reasonable. In all cases
except for A ≡ B → C, the induction goes through. But because of the non-
monotonicity of implication, one needs the direction B → BD as induction
hypothesis to prove (B → C)D → (B → C). But to prove a characterisation
lemma of the form Hω 
 AD ↔ A the discussion of prenexiation indicates
that we need Mω + IPω

∀ . This can easily be verified.3

Theorem 3.13 (Program extraction, [54, 3.7.5]). Let Π be as in The-
orem 3.12 and A(xρ, yσ) a formula of HAω with only x, y free. Then the
following rule holds.

HAω + AC + IPω
∀ + Mω + Π 
 ∀xρ∃yσA(x, y) ⇒

HAω + AC + IPω
∀ + Mω + Π 
 ∀xA(x, t(x)) ,

where t is a closed term that can be extracted from the proof of ∀x∃yA(x, y).

Proof sketch. We have

(∃yA(x, y))D ≡ ∃y, u∀vAD(u, v, x, y) .

By assumption and the soundness theorem, we get

HAω + Π 
 ∀x, vAD(t2(x), v, x, t1(x)) ,

hence

HAω + Π 
 ∀x∃u∀vAD(u, v, x, t1(x))
(≡ ∀x[A(x, t1(x))]D

)
.

Since, as discussed above, HAω + AC + IPω
∀ + Mω 
 A ↔ AD we find

HAω + AC + IPω
∀ + Mω + Π 
 ∀xA(x, t1(x)) .

3Instead of strengthening the proof system to make it prove AD → A for all A, one
might consider weakening the class of formulas considered. In [54, 3.6] the formula class
Γ2 addresses this problem.
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3.3.2 Monotone Functional Interpretation

As with (monotone) modified realizability, we define monotone functional
interpretation by changing the formulation of soundness from extraction of
terms t which realize the existential quantifier in (∀aA(a))D to extraction of
terms t′ that majorize such a realizer,

∃X(t′ maj X ∧ ∀a, yAD(X(a), y, a)) .

This allows us to use a large class of ineffective principles in proofs and still
be able to extract bounds.

Let ∆ be a set of closed formulas of the form ∀uδ∃v ≤γ r(u)∀wτB0(u, v, w),
where B0 is quantifier-free and r is a tuple of closed terms.

Theorem 3.14 ([30, 3.18], [34]). Let A(x1, yσ) be a formula with only x, y
free and deg(σ) ≤ 2. Then the following rule holds.

HAω + AC + IPω
∀ + Mω + ∆ 
 ∀x1∃yσA(x, y) ⇒

HAω + AC + IPω
∀ + Mω + ∆ 
 ∀x1∃y ≤σ t(x)A(x, y) ,

where t is a closed term of HAω that can be extracted from the assumption.

Alternatively, we could have ∆ be a set of arbitrary formulas given with
terms provably satisfying their monotone functional interpretation.

34



Chapter 4

Properties of Non-constructive
Principles

4.1 Presentations
This section will present three weak classical principles and discuss their
strength in increasing order.

4.1.1 Markov’s Principle

The Σ0
1-DNE principle has a special status in constructive reasoning and proof

theory, and it is generally known as Markov’s principle.
It is well-known that adding either of LEM and DNE to HA allows one

to derive exactly all sentences provable in PA. To verify this, it is enough to
argue that PA = HA + LEM proves DNE and that HA + DNE proves LEM:

¬¬(A∨¬A) is provable in HA. Hence HA 
 [¬¬B → B] → A∨¬A, where
B is A ∨ ¬A. Conversely HA 
 A ∨ ¬A → [¬¬A → A].

Therefore it seems plausible that Markov’s principle is not derivable in
HA, which was formally proved in 1959/1962 by Kreisel, see Proposition 4.11.
It is therefore reasonable to say that Σ0

1-DNE is “non-constructive”. And in-
deed, Brouwer and the intuitionists did not accept the principle. Brouwer
implicitly advocates his point of view in [6], where he, based on a predicate
A for which neither ¬A nor ¬¬A is known, constructs a real number x such
that ¬(x = 0) can be proved but x < 0 ∨ x > 0 cannot — that is, we can
prove ¬¬∃nB(n) but not ∃nB(n), refuting Markov’s principle.

However, Markov’s principle seems rather harmless: If we first establish
that it is contradictory that ∀n¬A0(n), then we can, due to the decidability
of quantifier-free formulas in HA, algorithmically find an n such that A0(n)
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— we simply try the natural numbers one after the other, it has to terminate.
A.A. Markov (1903–1979) argued this way in [44] and represents a branch of
constructive mathematics accepting the principle.

Even though the discussion above shows Markov’s principle to be some-
where in the wastelands between constructive and classical reasoning, we
can make precise statements about its proof-theoretic strength and weakness
if we switch from the subjective area of constructivism to a (much more)
objective one, namely HA.

The closure of HA under Markov’s rule given in Theorem 3.5 describes
the weakness of Markov’s principle. Notice that it seems to refute Brouwer’s
refutation: If we can prove ¬(x = 0) then we can also prove x < 0 ∨ x > 0.
But actually, it only shows that Brouwer did not argue in HA.

Markov’s argument and the closure property strongly suggest that from
a pragmatic point of view Markov’s principle is harmless. And certainly, it
allows program extraction:

Theorem 4.1. Let A(a, b) be an arbitrary formula of HA containing only a
and b free. Then

HA + Σ0
1-DNE 
 ∀a∃bA(a, b) ⇒ HAω + AC + Mω + IPω

∀ 
 ∀aA(a, t(a)) ,

where t is a closed term of HAω that can be extracted from the proof of
∀a∃bA(a, b).

Remark 4.2. The result follows from the more general Theorem 3.13 since
HA + Σ0

1-DNE can be viewed as a subsystem of HAω + Mω.
The strength of the system used to prove that the extracted term actually

realizes b in ∀a∃bA(a, b) is not essential to us — we only need to know that
it is true.

So what we mean by program extraction is that from a proof of a ∀x∃y
statement it is possible to extract a recursive function realizing y given x.

4.1.2 Π0
1-LEM

Further towards non-constructivity but still on the borderline is the logical
principle Π0

1-LEM. Neither the intuitionists nor the Russian constructivist
school accepted the principle, which is very reasonable since Π0

1-LEM directly
allows us to decide whether the language accepted by some Turing machine
is empty, and this is known not to be a recursive task. The point is proved
in the following proposition.

Proposition 4.3. HA + Π0
1-LEM does not allow program extraction. In fact,

recursive realizers do not exist.
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Proof. Assume that it were possible to extract computable realizers for
∀a∃bA(a, b) statements proved in HA + Π0

1-LEM. Let

A(a, b) :≡ (b = 0 → ∀n¬T (a, (n)0, (n)1) ∧ b = 0 → ¬∀n¬T (a, (n)0, (n)1)) .

Then ∀a∃bA(a, b) can be proved using Π0
1-LEM. We would then get a recursive

function f such that

∀a(f(a) = 0 ↔ ∀n¬T (a, (n)0, (n)1)) ,

which contradicts the undecidability of the “empty” problem.

However, using Π0
1-LEM we can still extract bounds using monotone mod-

ified realizability:

Theorem 4.4 ([30]). Let A(a, b) be an arbitrary formula containing only a
and b free. Then

HA + Π0
1-LEM 
 ∀a∃bA(a, b) ⇒

PAω + AC 
 ∀a∃b ≤ t(a)A(a, b) ,

where t is a closed term of HAω that can be extracted from the proof.

Remark 4.5. The result follows from Theorem 3.9. Note however that the
set Γ from Theorem 3.9 must consist of closed formulas, whereas instances
of Π0

1-LEM are allowed to have number parameters. The proof from [30] even
shows that PAω + AC can be replaced by a much weaker system.

So by bound extraction we mean the property that one from a proof of a
∀a∃b statement can extract a function f that recursively in a gives a bound
on b; ∀a∃b ≤ f(a).

The fact that it is useful to get merely a bound and not an actual realizer,
is an observation made in [27], the reason being that properties considered in
applications of proof mining often are monotone (or can be made so) which
means that a bound is actually a realizer.1

4.1.3 Σ0
1-LEM

We now turn to a logical principle that has none of the two properties men-
tioned above — it neither preserves program extraction nor bound extrac-
tion — namely the Σ0

1-LEM principle. The intuitive reason for the lack of
bound extraction is that whereas the existential information of Π0

1-LEM cor-
responds to a binary oracle choice between the two disjuncts, the information

1For more details on such applications refer to [34].
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of Σ0
1-LEM is a full countable oracle choice that picks a counterexample to ∀

or tells us that no such counterexample exists. We have the following propo-
sition.

Proposition 4.6. Σ0
1-LEM does not allow bound extraction.

Proof. Since Σ0
1-IP follows from Σ0

1-LEM, we have

HA + Σ0
1-LEM 
 ∀e∃m(∃nT (e, e, n) → T (e, e, m)) .

If we could extract a computable bound we would get a term t of HAω such
that,

∀e∃m ≤ t(e)(∃nT (e, e, n) → T (e, e, m)) ,

which would solve the halting problem effectively.

Σ0
1-LEM does, however, have a limit recursive realizer, as mentioned in

Chap. 1.

4.1.4 Concluding Connection

A final, pragmatic reason not to include Markov’s Principle in the construc-
tive logical core system is based on the following lemma:

Lemma 4.7. For any term t of HA

HA + Σ0
1-DNE 
 Σ0

1-LEM(t) ↔ Π0
1-LEM(sg(t)) .

Proof. Left to right is even provable without DNE. For the other direction
we aim at ¬∃n(t(n) = 0) ∨ ∃n(t(n) = 0). From Π0

1-LEM we already have
∀n¬(t(n) = 0)∨¬∀n¬(t(n) = 0), which over HA is equivalent to ¬∃n(t(n) =
0) ∨ ¬¬∃n(t(n) = 0).

That is, HA + Σ0
1-DNE is not as “stable” as HA, in the sense that adding

Π0
1-LEM no longer allows bound extraction, since the resulting system actu-

ally is equivalent to HA + Σ0
1-LEM. Or in other words, HA gives rise to more

interesting semi-constructive systems in that it distinguishes more principles
than HA+Σ0

1-DNE. Also, for this reason there are useful proof interpretations,
like (monotone) modified realizability, that actually do not satisfy Σ0

1-DNE.
To summarise, Markov’s principle is in many ways harmless on its own.

But there is good reason to not have it in the formal constructive system.
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4.2 Generalisations and Relations
We now aim at ordering the various logical principles introduced in Defini-
tions 2.8–2.12 for n = 1, 2 — to the extend that the principles are comparable.
The result is the hierarchy depicted below. The main theorem of [1] is a gen-
eralised version of Theorem 4.8 considering all n. The proof of the general
theorem is beyond the scope of this project, but restricting ourselves to the
cases n = 1, 2, we can give the proof theoretically interesting arguments that
are the core of the proof in [1], without worrying about the generalisation.
Furthermore, for this project we shall only refer to Theorem 4.8, and not the
general hierarchy.

Theorem 4.8 ([1]). In the following diagram, ��� denotes an implication
over HA that cannot be reversed and � �� refers to unprovability in HA.

Σ0
2-LEM

(14)
���

(13)

��������������

Σ0
2-DNE

��
���

��

���
���

(10)

��

(8)

���	
		

		
		

		
		

		
		

		
		

Π0
2-LEM

(11)
���

�
(12)��

Σ0
2-LLPO

(9)
���

Σ0
1-LEM

(7)
���

(6)

��������������

Σ0
1-DNE

��
���

��

���
���

(3)

��

(1)

���	
		

		
		

		
		

		
		

		
		

Π0
1-LEM

(4)
���

�
(5)��

Σ0
1-LLPO

(2)
���

Σ0
0-LEM

Remark 4.9. To make it explicit, P1
��� P2 is short for HA + P1 
 P2 and

HA + P2 
 P1. And P1 � �� P2 is short for HA + P1 
 P2.

Proposition 4.10. We gather the positive parts of (1), (2), (4), (6), (7) and
(8), (9), (11), (13), (14).

Proof. (1) and (2) are obvious since Σ0
0-LEM is provable in HA.
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(4): We consider the instance Σ0
1-LLPO(t1, t2). With Π0

1-LEM we can prove
Π0

1(sg(t1)) ∨ ¬Π0
1(sg(t1)) and the same for t2. The only problematic case is

¬Π0
1(sg(t1)) ∧ ¬Π0

1(sg(t2)) ,

which in HA is equivalent to

¬¬Σ0
1(t1) ∧ ¬¬Σ0

1(t2) .

Pulling out the double negations we get

¬¬(Σ0
1(t1) ∧ Σ0

1(t2)) ,

contradicting the premise of Σ0
1-LLPO, and we therefore also in this case, by

⊥ → A, get Π0
1(sg(t1)) ∨ Π0

1(sg(t2)).

(6) and (7) are straightforward.
(8): The argument is essentially the one sketched in the beginning of Sect. 4.1.1.
Let the Σ0

1-LEM instance be given by the term t. In HA we can prove
¬¬(∃k(t(k) = 0) ∨ ∀l¬(t(l) = 0)). This implies

¬¬∃k∀l[t(k) = 0 ∨ ¬t(l) = 0] .

So by Σ0
2-DNE we get

∃k∀l[t(k) = 0 ∨ ¬t(l) = 0] ,

and then also
∃k(t(k) = 0) ∨ ∀l¬(t(l) = 0) .

(9): Assuming Σ0
2-LLPO, we again aim at

∃l(t(l) = 0) ∨ ∀k¬(t(k) = 0) .

Let t1(k, l) := sg(t(l)) and t2(k, l) = t(k). Then

∃k∀l(t1(k, l) = 0) ∧ ∃k∀l(t2(k, l) = 0) → ∀l¬(t(l) = 0) ∧ ∃k(t(k) = 0)

→ ⊥ .

By Σ0
1-LLPO(t1, t2) we thus get

∀k∃l¬¬(t(l) = 0) ∨ ∀k∃l¬(t(k) = 0) ,
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hence
∃l(t(l) = 0) ∨ ∀k¬(t(k) = 0) .

(11): Assume Π0
2-LEM and let t1 and t2 be terms satisfying the premise of

Σ0
2-LLPO. As in (4) the only non-trivial case is

¬∀k∃l¬(t1(k, l) = 0) ∧ ¬∀k∃l¬(t2(k, l) = 0) .

Using Σ0
1-DNE2 we can prove

∀k¬¬∃l¬(t1(k, l) = 0) → ∀k∃l¬(t1(k, l) = 0) .

Hence we get

¬∀k¬¬∃l¬(t1(k, l) = 0) ∧ ¬∀k¬¬∃l¬(t2(k, l) = 0),

which is equivalent to

¬¬∃k∀l(t1(k, l) = 0) ∧ ¬¬∃k∀l(t2(k, l) = 0) .

This contradicts the assumption on t1, t2, so we get ⊥ and are done.

(13) is straightforward.
(14): From Σ0

1-LEM we get

∃k∀l¬(t1(k, l) = 0) ∨ ¬∃k∀l¬(t1(k, l) = 0).

Intuitionistically valid manipulations then give

∃k¬∃l(t1(k, l) = 0) ∨ ¬∃k¬∃l(t1(k, l) = 0)

→ ¬∀k∃l(t1(k, l) = 0) ∨ ∀k¬¬∃l(t1(k, l) = 0) .

And so, by Σ0
1-DNE, we get the desired Π0

1-LEM instance.

The first negative result we consider is (1), which states that Σ0
1-DNE is

not derivable in HA and it is proved in the following proposition. Though the
negative part of (1) follows from (2), (4) and (5), we give the proof because
it was one of the first results of its kind, and its basic idea is shared by the
other negative results that we present below.

2It is easy to verify directly that Π0
2-LEM implies Σ0

1-DNE.
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Proposition 4.11 (Kreisel [37, 38]).

HA 
 Σ0
1-DNE .

Proof. Assume that

HA 
 ∀x(¬¬∃yT (x, x, y) → ∃yT (x, x, y)) ,

then using modified realizability we get a closed term t of HAω such that

HAω 
 ∀x(¬¬∃yT (x, x, y) ↔ T (x, x, t(x))) ,

which would solve the halting problem, contradicting the fact that t repre-
sents a recursive function.

Next we consider a relativised version of the proposition above, which
shows the negative part of Theorem 4.8 (8). There is a completely analogous
result on a level higher — if we strengthen our proof system by adding
Σ0

1-LEM, and correspondingly strengthen Σ0
1-DNE to Σ0

2-DNE, the proof from
above still goes through. Again, the result follows from (9), (11) and (12),
but it is included to introduce the relativising technique in a simple case.

Lemma 4.12 ([1]).

HA + Σ0
1-LEM 
 Σ0

2-DNE .

Proof. Suppose for a term s[a] with only a free that

HA + Σ0
1-LEM 
 ∀aΣ0

2-DNE(s[a]) .

We introduce the ε-axiom (in the sense of [18]),

(ε) t(x, b) = 0 → t(g(b), b) = 0 ,

to get
HA[g] + (ε) 
 ∀b(∃x(t(x, b) = 0) ↔ t(g(b), b) = 0) .

So HA[g]+(ε) 
 ∀aΣ0
2-DNE(s[a]) and therefore, by modified realizability,3 we

get a term t representing a functional recursive in g, such that

HA[g]ω + (ε) 
 ∀a(∃x∀y(s(a, x, y) = 0) ↔ ∀y(s(a, t[g](a), y) = 0)) .

3The ε-axiom is existential-free and therefore realizes itself.
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With a new ε-axiom, (ε′), capturing this last ∀y quantifier and a fresh func-
tion symbol h, we get a term t′ that recursively in g and h decides the Σ0

2

statement:

HA[g, h]ω + (ε) + (ε′) 
 ∀a(∃x∀y(s(a, x, y) = 0) ↔ t′[g, h](a) = 0) .

By choosing s to be the matrix of a complete Σ0
2-relation (cf. [48, 16.1] we

get a contradiction to the fact that such a relation is not Turing-reducible to
any Σ0

1-relation.

The proof of the next lemma — which is (3) and hence, a fortiori, the
remaining part of (2) — explains why Σ0

1-LLPO (with function parameters) is
sometimes (in [56]) called SEP; a constructive interpretation of the principle
gives an oracle for separating disjoint, recursively enumerable sets.

Lemma 4.13 ([1]).

HA + Σ0
1-DNE 
 Σ0

1-LLPO .

Proof. We have

¬(∃y(T (x, x, y) ∧ U(y) = 0) ∧ ∃y(T (x, x, y) ∧ U(y) = 1)) ,

so if we assume Σ0
1-LLPO to be provable in HA + Σ0

1-DNE, we would get

∀x(∀y¬(T (x, x, y) ∧ U(y) = 0) ∨ ∀y¬(T (x, x, y) ∧ U(y) = 1)) .

Functional interpretation would then provide a term t of HAω such that
(arguing in HAω + AC + IPω

∀ + Mω)

t(x) = 0 → ¬∃y(T (x, x, y) ∧ U(y) = 0) and
t(x) = 0 → ¬∃y(T (x, x, y) ∧ U(y) = 1) .

Let z be a code of the recursive function represented by sg(t). Then

t(z) = 0 → ∃y(T (z, z, y) ∧ U(y) = 0) sg(t) is total and so {z}(z) ↓.
→ t(z) = 0 by the implication above.

and analogously for t(z) = 0:

t(z) = 0 → ∃y(T (z, z, y) ∧ U(y) = 1)

→ t(z) = 0 ,

which is a contradiction.
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Note that the just proved Theorem 4.8 (3) in combination with the posi-
tive part of (4) provides Σ0

1-DNE → Π0
1-LEM.

The next lemma proves the remaining part of (4). In fact we show a
stronger result, namely that both Σ0

1-DNE and Σ0
1-LLPO together are still

not enough to prove Π0
1-LEM. The first step is to note that in the presence of

Σ0
1-DNE, Π0

1-LEM is lifted to Σ0
1-LEM. As mentioned in Sect. 4.1.3 the latter

is of a very different nature — the non-constructivity of Σ0
1-LLPO is a binary

(therefore bounded) one whereas that of Σ0
1-LEM is in a sense unbounded.

It seems unreasonable to expect that the harmless Σ0
1-DNE and Σ0

1-LLPO,
that does not have any double negated ∃ quantifiers, should give rise to such
unboundedness. The following shows this intuition to be true.

Lemma 4.14 ([34]4).

HA + Σ0
1-LLPO + Σ0

1-DNE 
 Π0
1-LEM .

Proof. Assume that HA + Σ0
1-LLPO + Σ0

1-DNE 
 Π0
1-LEM. Then we can also

derive Σ0
1-LEM and get the following Σ0

1-IP conclusion for ∀a(∃nT (a, a, n) →
∃nT (a, a, n)),

∀a∃n(∃mT (a, a, m) → T (a, a, n)) .

It is easily checked that Σ0
1-LLPO follows from a sentence with a simple

monotone functional interpretation. For instance, define

t̃1(n) :=

{
1 if t1(n) = 0 ∧ ∀m ≤ n(t2(n) = 0)

t1(n) otherwise ,

recursively in tt, t2, and analogously for t̃2. Then t̃1, t̃2 always satisfy the
premise of Σ0

1-LLPO and if t1, t2 already did then t̃1 = t1 and t̃2 = t2. So
by equivalently writing the disjunction in the conclusion of Σ0

1-LLPO in the
form ∃k ≤ 1(k = 0 → A ∧ k = 1 → B) we have a sentence whose mono-
tone functional interpretation is satisfied by the constant 1 function in the
parameters. Furthermore, Σ0

1-DNE has a monotone functional interpretation.
Thus, by monotone functional interpretation we get a term t of HAω

satisfying

HAω 
 ∀a∃n ≤ t(a)(∃mT (a, a, m) → T (a, a, n)) ,

which could be used to solve the special halting problem.

We now prove (5) which strengthens Lemma 4.11, and thereby we also
show that Σ0

1-LLPO → Σ0
1-DNE.

4In the chapter on monotone functional interpretation.
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Lemma 4.15 ([34]5).

HA + Π0
1-LEM 
 Σ0

1-DNE .

Proof. If HA + Π0
1-LEM 
 Σ0

1-DNE, then also HA + Π0
1-LEM 
 Σ0

1-LEM
by Lemma 4.7. Since the monotone modified realizability interpretation of
Π0

1-LEM is satisfied by the constant 1 function (in the parameters), we get a
contradiction as in the proof of Lemma 4.14.

The next lemma is a relativised variant of lemma 4.14. The relation be-
tween these two is much like the one between Propositions 4.11 and 4.12.

Lemma 4.16.

HA + Σ0
2-LLPO + Σ0

2-DNE 
 Π0
2-LEM .

Proof. We first prove that HA + Π0
2-LEM + Σ0

2-DNE 
 Σ0
2-LEM.

∀m∃n¬A0(m, n) ∨ ¬∀m∃n¬A0(m, n)

→ ∀m¬∀nA0(m, n) ∨ ¬∀m∃n¬A0(m, n)

→ ¬∃m∀nA0(m, n) ∨ ¬∀m∃n¬A0(m, n)
∗→ ¬∃m∀nA0(m, n) ∨ ¬∀m¬¬∃n¬A0(m, n)

→ ¬∃m∀nA0(m, n) ∨ ¬¬∃m∀nA0(m, n)
∗∗→ ¬∃m∀nA0(m, n) ∨ ∃m∀nA0(m, n) ,

where (∗) follows from Σ0
1-DNE and (∗∗) from Σ0

2-DNE.
As in the proof of Lemma 4.12 we define an ε-axiom for the new function

symbol g to get

HA[g] + (εB) 
 ∀m(∃n¬B0(m, n) → ¬B0(m, gB(m))) ,

and similarly for C0 with (εC) and gC .
We now prove that using gB, gC we get Σ0

2-LLPO from Σ0
1-LLPO[gB, gC ],

where S[f ] for some schema S denotes the schema of which instances are
allowed to be given by terms of the enriched language of HA[f ]. Note that
when we just write S in the context HA[f ] we still only consider instances of
HA.

Let the considered Σ0
2-LLPO instance be given by quantifier-free B0, C0

satisfying
¬(∃m∀nB0(m, n) ∧ ∃m∀nC0(m, n)) . (4.1)

5In the chapter on monotone modified realizability.
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By (εB) + (εC), (4.1) is equivalent to

¬(∃mB0(m, gB(m)) ∧ ∃mC0(m, gC(m))) ,

which, assuming Σ0
1-LLPO[gB, gC ], gives,

∀m¬B0(m, gB(m)) ∨ ∀m¬C0(m, gC(m)) .

Hence,
∀m∃n¬B0(m, n) ∨ ∀m∃n¬C0(m, n) .

That is, the oracles gB, gC lift Σ0
1-LLPO[gB, gC ] to Σ0

2-LLPO. By similar argu-
ments Σ0

1-DNE[gB, gC ] can be seen lifted to Σ0
2-DNE. So we have proved that

if HA + Σ0
2-LLPO 
 Π0

2-LEM, then

HA[gB, gC ] + (εB) + (εC) + Σ0
1-DNE[gB, gC] + Σ0

1-LLPO[gB, gC] 
 Σ0
2-LEM .

Now using monotone functional interpretation6 we find, for any quantifier
free A0, a term t of HAω[gB, gC ] such that

∀k∃m′ ≤ t[gB, gC ](k)∀n′(∃m∀nA0(m, n) → A0(m
′, n′)) .

Hence

∀k(∃m∀nA0(m, n) ↔ ∃m′ ≤ t[gB, gC](k)∀n′A0(m
′, n′) .

We then use gB, gC to try the t[gB, gC ](k) different possibilities and get a
new term s of HAω[gb, gC ] that recursively in the halting problem decides a
arbitrary Σ0

2 statement:

∀k(∃m∀nA0(m, n) ↔ s[gB, gC ](k) = 0) .

By choosing A0 as the matrix of a complete Σ0
2-relation, this gives a contra-

diction.

To finish the proof of Theorem 4.8 we show the following two lemmata,
which relativise Lemma 4.13 respectively Lemma 4.15.

Lemma 4.17.
HA + Σ0

2-DNE 
 Σ0
2-LLPO .

6The ε-axioms are purely universal, and therefore their own functional interpretation.
Note also that the interpretations of the schemata Σ0

1-LLPO[gB, gC ] and Σ0
1-DNE[gB, gC ]

are easily satisfied.
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Proof. For notational simplicity we denote the new function symbols as just
one function symbol g and the ε-axioms by (ε). From Post’s Theorem (cf.
[48, 14.8]), we know that

¬(∃y(T g(x, x, y) ∧ U(y) = 0) ∧ ∃y(T g(x, x, y) ∧ U(y) = 1)) ,

is equivalent (classically) to a relation of the form ¬(Σ0
2(t1) ∧ Σ0

2(t2)), for
terms t1, t2 of HA.7 Assume that Σ0

2-LLPO were derivable from Σ0
2-DNE,

hence from Σ0
1-DNE[g] (in HA[g]+(ε)). Applying functional interpretation to

the Σ0
2-LLPO conclusion would then give a contradiction as in the proof of

Lemma 4.13.

Lemma 4.18.
HA + Π0

2-LEM 
 Σ0
2-DNE .

Proof. If HA + Π0
2-LEM 
 Σ0

2-DNE, then also HA + Π0
2-LEM 
 Σ0

2-LEM. And
so, arguing as in the proof of Lemma 4.16 (with the notational simplification
from Lemma 4.17), HA[g] + (ε) + Π0

1-LEM[g] 
 Σ0
2-LEM. Using monotone

modified realizability we, again as in Lemma 4.16, get a contradiction.

4.3 Reflection on the Principles
This section looks at the hierarchy of Theorem 4.8 once again. It will focus on
two things — the methods used to differentiate the levels in the hierarchy,
and what more these methods do, than merely separating the levels. The
discussion will restrict itself to the principles for n = 1, but most of it has a
relativised (oracle) interpretation on the higher levels.

4.3.1 Interpreting the Proof of Theorem 4.8

In the proof of Theorem 4.8 the basic common idea, when separating two
principles, was to find a proof interpretation which satisfied one principle
but not the other. Looking through the lemmata one finds that we have used
four different interpretations — two pairs of interpretations actually.

The first pair is the modified, and monotone modified, realizability. Mod-
ified realizability satisfies none of the principles we consider. We used this to
prove that Σ0

1-DNE was not derivable in HA. Monotone modified realizabil-
ity satisfies two of our principles; Σ0

1-LLPO and Π0
1-LEM, and it therefore, in

particular, separates Σ0
1-DNE from Π0

1-LEM.
7Where we have adopted the oracle notation for the T-predicate, T g, from [48].

47



The second pair is functional, and monotone functional, interpretation.
Regular functional interpretation satisfies Σ0

1-DNE, and none of the other
principles. The corresponding monotone interpretation satisfies one more of
our principles, namely Σ0

1-LLPO. It does not satisfy Π0
1-LEM, for it looks

enough into the formulas to satisfy Σ0
1-DNE and hence does not distinguish

between Π0
1-LEM and Σ0

1-LEM (Lemma 4.7); and we know that Σ0
1-LEM does

not have a monotone functional interpretation (Proposition 4.6).

4.3.2 What More Do we Know

Program Extraction. In Sect. 4.1 we discussed the three logical principles
Σ0

1-DNE, Π0
1-LEM and Σ0

1-LEM. We saw that only Σ0
1-DNE allows program

extraction. Sect 4.2 considered also the Σ0
1-LLPO principle. A first step to

fitting in this principle in the discussion from Sect 4.1 is in the proof of Lemma
4.13, which shows that Σ0

1-LLPO does not preserve the program extraction
property.

Bounds. As is the case with Π0
1-LEM, the positive information in the

conclusion of Σ0
1-LLPO is binary, and it allows bound extraction (cf. The-

orem 4.4), since it is weaker than Π0
1-LEM by Proposition 4.10.

But the nature of Σ0
1-LLPO is also quite different from that of Π0

1-LEM.
It might happen that in the conclusion of Σ0

1-LLPO, both disjuncts are true;
in such a case, an imagined realizer for the principle would be free to chose
either one, since the principle itself reveals no restrictions. Π0

1-LEM does not
have this nondeterministic feature, since the two disjuncts in Π0

1-LEM cannot
both hold.

This difference is used in [1, Theorem 3.14] by the so-called Lifschitz
realizability interpretation (cf. [55, Sect. 5]) for which Σ0

1-LLPO is among
the self-realizing formulas — which for modified realizability are the ∃-free
formulas. The proof given above uses instead the fact that on the one hand
Σ0

1-DNE exposes a positive ∃-quantifier in Π0
1-LEM, but on the other it has

no real effect on Σ0
1-LLPO.

The extra strength of Π0
1-LEM has a price. As explained above, Π0

1-LEM
allows bound extraction, but also adding Σ0

1-DNE is not conservative with re-
spect to this property. This, however, is the case for Σ0

1-LLPO, since Σ0
1-LLPO+

Σ0
1-DNE has a monotone functional interpretation. So proof theoretically one

can either use Π0
1-LEM or use Σ0

1-LLPO+Σ0
1-DNE and in both cases preserve

the bound extraction property.
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Limits Beyond the Bounds. When using principles as strong as Σ0
1-LEM,

it is not possible to extract bounds (in the sense of Proposition 4.6). Yet,
as explained in Sect. 2.1.1, Σ0

1-LEM and even Σ0
2-DNE have limit recursive

realizers, and therefore some amount of (semi-) constructive information is
still extractable from proofs using Σ0

2-DNE.
From the proof of Lemma 4.17 we get that Σ0

2-LLPO is not even limit
realizable. For such a realizer would, by the Limit Lemma (cf. [48, 15.4] and
[45, Theorem 4]) and Post’s Theorem (cf. [48, 14.9]), be recursive in Π0

1.
Therefore it would be recursive in the ε-function g. But this leads to the
contradiction also found in the proof of Lemma 4.17.

49



Chapter 5

Overview of Related Work

Our calibration project resembles the main question of reverse mathematics:

Which set existence axioms are needed to prove the theorems of
ordinary, non-set-theoretic mathematics?1

The reason for the resemblance is in essence the word “needed”. For reverse
mathematics investigates theorems from mathematical practice and certain
systems of set-theoretic axioms. It turns out that there is a small number of
such systems, each corresponding to a subclass of the considered mathemat-
ical theorems such that, for proving theorems in a certain subclass, axioms
from the corresponding subclass are needed. Furthermore, these axiom sys-
tems are sufficient in many cases.

Below we present some of the results of reverse mathematics that are
of interest to this project. We then introduce a refined reverse mathematics
which makes proof theoretically motivated distinctions between mathemati-
cal theorems identified by ordinary reverse mathematics. Next, an essentially
different calibration view-point from constructive mathematics is considered.

5.1 Classical Reverse Mathematics
The term reverse mathematics is used for a metamathematical branch which
has a reversed approach; the theorems of mathematical practice become the
hypotheses and the axioms are the conclusions. Sometimes the term also
figures as synonymous with the monograph [49] by Simpson. We follow this
trend and coin the phrase classical reverse mathematics for a broader area
— hoping this not to be a cause of confusion.

1[49, p. 2].

50



5.1.1 Reverse Mathematics

The title of [49] sums up its setting, Subsystems of Second Order Arithmetic.
Second order arithmetic is two-sorted arithmetic with both quantifiers for
numbers and sets of numbers. This corresponds to type 0 respectively type 1
quantifiers, by relating a set with its characteristic function. Thus, the context
is strong enough to reason about real numbers and continuous functions.

One of the discoveries of reverse mathematics is that very few subsystems
are needed to precisely characterise large parts of ordinary mathematics; the
most important among those are RCA0, ACA0 and WKL0.

RCA0 is the weakest system we shall look at. It has basic axioms for ad-
dition, multiplication and ordering on the natural numbers. Induction re-
stricted to Σ0

1-formulas and comprehension for ∆0
1-formulas is included. No

parameter restrictions are made on the formula classes, ie. they are allowed
to have both number and set variables.

From basic recursion theory, we know that the ∆0
1 sets are exactly the

recursive ones (cf. [48, 14.6]). Using this fact one finds that the recursive sets
form the smallest ω-model (ie. a model whose ground type is modelled by
ω — the set of natural numbers) of RCA0. For this reason, RCA0 is in [49]
promoted as corresponding to the “foundational program” of constructivism.2

In RCA0 many of the basic properties of the real numbers and closure
properties of the class of continuous functions can be established; even the
intermediate value theorem3 is provable in RCA0.4

ACA0 is obtained from RCA0 by adding comprehension for arithmetical for-
mulas. In the same spirit as with RCA0, one finds that the arithmetical sets
form the smallest ω-model of ACA0. Already in ACA0 a significant part of
mathematics can be proved, and, for the reverse direction, important mathe-
matical principles are equivalent to ACA0 over RCA0. For instance, the prin-
ciple of monotone convergence5 (PCM), the Bolzano-Weierstraß principle6

(BW) and the limit superior principle7 (Limsup) are all equivalent to ACA0

(cf. [49, III.2.2]).
2Cautious remarks to this correspondence are made in [49, I.8.9].
3For every continuous function f : [0, 1] → R with f(0) ≤ 0 ∧ f(1) ≥ 0 there exists a

point x ∈ [0, 1] such that f(x) = 0.
4The proof of this last statement is sketched and discussed in Sect. 8.3.
5Every bounded increasing sequence of rationals is convergent.
6Every bounded sequence of rationals has a limit point.
7Every bounded sequence of rational has a largest limit point.
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WKL0. A group of principles concerning continuous functions are provable
in ACA0 and not in RCA0. But on the other hand they do not entail arith-
metical comprehension; eg. the attainment of the maximum principle8 and
the Heine-Borel covering lemma9. In turns out that a comprehension princi-
ple known as weak König’s lemma captures these intermediate theorems of
classical analysis — along with many other non-constructive theorems.

Weak König’s lemma states that any infinite binary tree has an infinite
branch. Adding this principle to RCA0 defines the system WKL0. This results
in a strictly stronger system since Kleene’s singular tree is a recursive infinite
binary tree with no recursive infinite branch (see [3]). The construction of
the singular tree uses two recursively enumerable and recursively inseparable
sets, as does the proof that Σ0

1-LLPO is not provable in HA (Lemma 4.13).
The relationship between weak König’s lemma and Σ0

1-LLPO is closer yet;
actually they are equivalent over HAω +AC0,0 (cf. [20] and [33]). Chap. 8 will
include a discussion of the kinship between WKL0 and HAω+AC0,0+Σ0

1-LLPO.

5.1.2 A Refinement

For proof mining purposes the characterisations above can be somewhat
crude. If a proof only uses, say the Bolzano-Weierstraß principle, without
function parameters (respectively with function parameters kept fixed) —
which indeed is the case for many applications — then much more informa-
tion can be extracted from the proof, than if we merely exploit the fact that
we a fortiori have used the unrestricted principle. Such a refined analysis has
been carried out in [28] and [32] for some principles of mathematical analysis.
In a sense, this deviates from the main question of [49]; the focus is no longer
on set-theoretic axioms used to prove the full second order version of certain
principles, but on the use of instances of these principles.

When restricting PCM, one finds that it only implies comprehension for
Σ0

1 formulas (without function parameters),10 whereas the unrestricted form
implies full arithmetical comprehension. In terms of provably total functions,
the borderline is found to be between BW and Limsup. BW (and hence PCM)
in a weak11 second-order context corresponds to PRA+Σ0

1-IA whereas Limsup
corresponds to PRA + Σ0

2-IA. The former system only proves the totality of
the primitive recursive functions, whereas the latter also proves for instance

8Every continuous function on [0, 1] attains its maximum.
9Every covering of [0, 1] by a sequence of open sets has a finite subcovering.

10Cf. [32, 5.7].
11Weaker than RCA0 since Σ0

1-CA (without set/function parameters) would in the pres-
ence of Σ0

1-IA
+ (Σ0

1 induction with set/function parameters) allow to derive Σ0
2-IA (without

set/function variables) and hence the totality of the Ackermann function.
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the Ackermann function to be total.

5.2 Constructive Reverse Mathematics
The main question of constructive reverse mathematics could be phrased:
“what amount of classical logic is needed to prove the theorems of ordinary
mathematics”. On the other hand, countable choice (AC0,0) is included in the
context. There is no established program of constructive reverse mathematics,
but instead a series of isolated results can be gathered by their answers to
the question given above.

The subject dates back to Brouwer and the so-called Brouwerian coun-
terexamples. They are the subject of the next section and can be viewed
as the “reverse” part of a constructive calibration program. Following this,
we discuss a very recent survey article whose subject is constructive reverse
mathematics.

5.2.1 Brouwerian Counterexamples

One easily gets the impression that Brouwer’s constructive approach is mainly
destructive. Intuitionistic reasoning disallows the LEM and therefore most
of, for instance and in particular, mathematical analysis is no longer valid in
intuitionistically based mathematics. This impression turns out to be over-
simplified — in a sense, intuitionistic logic can be viewed as a refinement of
classical logic (eg. Sect. 3.1.1) and intuitionistic mathematics and classical
mathematics are incomparable (eg. non-classical axioms on choice sequences
can be consistently added. See also Sect. 8.3). Given these remarks, we now
present some negative (destructive) results concerning analysis.

Brouwerian counterexamples were first used by Brouwer to demonstrate
how certain mathematical principles were inherently classical. This is ob-
tained by showing that the principle in question implies a principle of clas-
sical (and not intuitionistic) logic or, in the earlier cases, a statement that
in a constructive interpretation gives a solution to some unsolved problem,
like the Riemann hypothesis. Later the same technique was used in Bishop’s
constructive mathematics, but with a more systematic approach, not directly
using unsolved problems. A group of ineffective logical principles — Bishop
coined them Omniscience Principles12 — were made for this purpose. They
are LPO, WLPO and LLPO (see Sect. 2.3); also Markov’s principle and a so-
called weak Markov’s principle are considered, but counterexamples based on

12Mandelkern gives an informal introduction to the area and its history in [43]. He
explains, “The term ‘omniscience’ is used [. . . ] to remind us that we are not omniscient!”
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those principles are, so to speak, not first-class counterexamples as indicated
in for instance [43, p. 20].

The counterexamples can be seen as the reverse part of a reverse mathe-
matics in an intuitionistic context. We shall see that some of these counterex-
amples can be used to prove one direction in the calibrations we perform in
the following chapters.

A Brouwer ian counterexamples sketched in [5] shows that the intermedi-
ate value theorem implies LLPO in a constructive context. As we saw in con-
nection with Definition 2.12, LLPO is closely connected to Σ0

1-LLPO, which
in turn corresponds to the second-order theory WKL0 of reverse mathematics.
This already suggests that classical and constructive reverse mathematics do
not agree on the status of the intermediate value theorem, since it is provable
in RCA0. Sect. 8.3 will discuss this in detail.

5.2.2 Precise Calibrations of Entailed Classical Logic

To make it easier to come up with Brouwerian counterexamples,13 Mandelk-
ern in [42] found a series of principles all equivalent to LPO — Bolzano-
Weierstraß for example. This led to further research whose aim was, given a
theorem of classical mathematics T , to find a logical principle P such that
not only T ⇒ P , but also P ⇒ T — where the implications are proved in
Bishop’s constructive mathematics.

Very recently a survey of this research has been given in [21]. As the
title of the paper suggests, this may be viewed as work in constructive re-
verse mathematics. The paper considers both the omniscience principles and
a group of very weak principles resembling Markov’s principle.

Using the terms that have been introduced in the present chapter, the project
of this thesis, in particular the following chapters, is to study refined construc-
tive reverse mathematics.

13[43, p. 19] gives this motivation.
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Chapter 6

The Strength of Σ0
1-LEM and

Π0
1-LEM

This chapter gives the first calibration results. They are concerned with
Σ0

1-LEM and Π0
1-LEM. We start out with a rather detailed study of Σ0

1-LEM
resulting in enough results to close up the investigation for our purpose. Fol-
lowing this, we examine Π0

1-LEM. This turns out to leave behind an equiv-
alence between Π0

1-LEM and an analytic supremum principle and an open
problem.

6.1 Introducing Principles from Analysis
Definition 6.1. Let f be a function of type 1 representing a sequence of ra-
tionals via the coding from Sect. 2.4.1. We define the principle of convergence
for bounded, monotone sequences as:

PCM(f) :≡∀n (0 ≤Q f(n + 1) ≤Q f(n))

→ ∃g1∀k∀m
(|f(g(k)) −Q f(g(k) + m)|

Q
<Q 2−k

)
.

Which immediately gives — and using AC0,0 follows from — its arithmetical
formulation:

PCMar(f) :≡∀n (0 ≤Q f(n + 1) ≤Q f(n))

→ ∀k∃n∀m
(|f(n) −Q f(n + m)|

Q
<Q 2−k

)
.

Remark 6.2. The restriction to non-increasing sequences and the particular
lower bound 0 is inessential.

An instance of an analytic principle is given by a term t of HA. As with
the logical principles defined in Sect. 2.3, we allow number parameters in
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instances of PCM− and PCM−
ar, but not function parameters. To remind our-

selves and others of this, we add a − to the schema name when referring to
this restricted form of it. The same convention also applies to other mathe-
matical principles that will be defined in the next chapters.

Clearly, the existence of a limit with a modulus of convergence γ,

∃x ∈ R∀k∀m ≥ γ(k)(|x −R f(m)| <R 2−k) ,

implies PCM− (and hence PCM−
ar) over HAω. But PCM−

ar does not allow one
to derive existence of the limit, since by our definition, a real number must
have fixed rate of convergence 2−n, and this is only implicitly given in PCM−

ar.
With the use of AC0,0 however, one can over HAω get PCM− which in turn
implies the existence of the limit with the modulus of convergence. Actually,
only QF-AC is needed to get PCM− from just the existence of a limit. This
is due to the fact that the existence of a limit,

∃x ∈ R∀k∃n∀m ≥ n(|x −R f(m)| <R 2−k) ,

is equivalent to

∃x ∈ R∀k∃n > k(|x −R f(n)| <R 2−k) ,

when f is monotone.
From classical analysis it is a well-known fact that a real-valued func-

tion defined on a closed interval is of bounded variation if and only if it
is the difference of two increasing functions. We formulate one direction of
the restriction of this theorem to the uniformly continuous functions in the
following principle.

Definition 6.3. Define PBV(f) as

f ∈ C[0, 1] → (∃b ∈ Q∀r0(Vr(f) ≤Q b) → ∃g1→1, h1→1∀x, y ∈R [0, 1]

[x ≤R y → (g(x) ≤R g(y) ∧ h(x) ≤R h(y)) ∧ f(x) =R g(x) − h(x)]
)

,

where

Vr1,...,rm(f) :≡
m−1∑
i=0

|f(ri+1) − f(ri)| .

Remark 6.4. By primitive recursive coding of all finite sequences the ∀r0

quantifier is a type 0 quantifier.
We shall use a result due to N.D. Goodman.

Theorem 6.5 (Goodman’s theorem). HAω +AC is conservative over HA,
that is: If A is a formula of HA then

HAω + AC 
 A ⇒ HA 
 A .
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6.2 Monotone Convergence and Σ0
1-LEM

The following proposition states that PCM−
ar is at least as strong as Σ0

1-LEM.
The proof uses a construction also presented in [56, 5.4.4]. There however,
it is used to establish a Brouwerian counterexample to PCM based on LPO.
Following [56] we use an increasing sequence bounded from above by 2 —
this is of course inessential.

Proposition 6.6. HA + PCM−
ar 
 Σ0

1-LEM .

Proof. Let the Σ0
1-LEM instance be given by a term t[a] such that we aim to

decide ∃n(t(n, a) = 0) ∨ ¬∃n(t(n, a) = 0). Define

f(m, a) =

{
1 − 2−m if ¬∃n ≤ m (t(n, a) = 0)

2 − 2−m if ∃n ≤ m (t(n, a) = 0) .

Clearly, f is monotone increasing (in its first argument) and f(m, a) ∈
[0, 2]. By PCM−

ar we therefore get ∃n0∀m
(
f(n0 + m, a) − f(n0, a) < 1

4

)
. Since

f only takes rational values we can prove f(n, a) ≤ 1∨ f(n, a) > 1. For each
case we have:

(1) f(n0, a) ≤ 1: Using the definition of n0 we get

∀m ≥ n0

(
f(m, a) < 5

4

)
. (6.1)

But we also have

∃n(t(n, a) = 0) → ∃n∀m ≥ n
(
f(m, a) = 2 − 2−m

)
→ ∃n∀m ≥ max{n, 1} (f(m, a) ≥ 6

4

)
,

which together with (6.1) yields ¬∃n(t(n, a) = 0).

(2) f(n0, a) > 1 → ∃n ≤ n0(t(n, a) = 0) → ∃n(t(n, a) = 0)

That is, from f(n0, a) ≤ 1 ∨ f(n0, a) > 1 we get the desired Σ0
1-LEM.

Remark 6.7 (Strengthening). As a corollary to the proof, we find the follow-
ing, somewhat stronger, result: There is a term Φ2 of HAω restricted to only
have the recursor constant R0 for type 0 such that

HAω 
 ∀f 1(PCMar(Φ(f)) → Σ0
1-LEM(f)) .

When f is a primitive recursive function, the fact that Φ at most uses R0

ensures that Φ(f) is again primitive recursive (cf. [24]).
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That PCM−
ar is in fact no stronger than Σ0

1-LEM is expressed in the fol-
lowing theorem. Its proof is based on proof interpretations. The idea is that
since PCM−

ar is easily proved in PA, we know that HA proves a version of
PCM−

ar formulated sufficiently negatively. The main task is then to show that
Σ0

1-LEM is enough to get the original formulation back.

Theorem 6.8. HA + Σ0
1-LEM 
 PCM−

ar .

Proof. We consider a classical proof of PCM−
ar:

PA 
 ∀a
[∀n (0 ≤ t(n + 1, a) ≤ t(n, a))

→ ∀k∃n∀m
(|t(n, a) − t(n + m, a)| < 2−k

) ]
.

Define f̃(n, a) := max{0, mini≤n{f(i, a)}}. f̃ is decreasing, non-negative, and
if already f were so, then it is equal to f . Therefore it is enough to consider
t̃. That is,

PA 
 ∀k∃n∀m
(∣∣t̃(n, a) − t̃(n + m, a)

∣∣ < 2−k
)

.

Using negative translation and functional interpretation (cf. Example 3.11)
we get a term Φ, such that

HAω 
 ∀k∀g1
(∣∣t̃ (Φ(k, g, a), a) − t̃

(
Φ(k, g, a) + g(Φ(k, g, a))

)∣∣ < 2−k
)

.

Let A0(m, n, k, a) :≡ ∣∣t̃(n, a) − t̃(n + m, a)
∣∣ < 2−k. To finish the proof we

need to show, in some appropriate setting, that

∀gA0

(
g(Φ(k, g, a)), Φ(k, g, a), k, a

)→ ∃n∀mA0(m, n, k, a) ,

where appropriate means that it is conservative over HA + Σ0
1-LEM.

We have

∀n(∃m¬A0(m, n, k, a) → ∃l¬A0(l, n, k, a))
Σ0

1-LEM→
∀n∃l(∃m¬A0(m, n, k, a) → ¬A0(l, n, k, a))

AC0,0→
∃g0∀n(∃m¬A0(m, n, k, a) → ¬A0(g0(n), n, k, a)) .

Our claim is that Φ(k, g0, a) is the n we are looking for — that is, we need
to show ∀mA0(m, Φ(k, g0, a), k, a).

By assumption we have

A0

(
g0(Φ(k, g0, a)), Φ(k, g0, a), k, a

)
. (6.2)
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Now for all m we find that

¬A0(m, Φ(k, g0, a), k, a) → ¬A0

(
g0(Φ(k, g0, a)), Φ(k, g0, a), k, a

)
,

which contradicts (6.2), and we get ¬¬A0(m, Φ(k, g0, a), k, a), and then
A0(m, Φ(k, g0, a), k, a). So finally we have ∀mA0(m, Φ(k, g0, a), k, a).

That is,

HAω + AC + Σ0
1-LEM 
 ∀k∃n∀m

(∣∣t̃(n, a) − t̃(n + m, a)
∣∣ < 2−k

)
,

where we remark that instances of Σ0
1-LEM are terms of HA only. The deduc-

tion theorem and Goodman’s theorem now finish the proof.

From the two results above we gather the following corollary, which states
analogous results for un-arithmetical PCM−.

Corollary 6.9.
HAω + AC0,0 + Σ0

1-LEM 
 PCM− ,

and
HAω + PCM− 
 Σ0

1-LEM .

6.3 Discussion and Improvement
A natural question now arises. Is Goodman’s theorem really needed? The
result simply states that the equivalence can be proved in HA, so why not
do this instead of just, via some rather technical theorem, showing that it is
possible. A first attempt would be to examine the classical proof of PCM−

ar and
check whether any classical reasoning beyond Σ0

1-LEM is used. Unfortunately,
the standard proof of PCM−

ar is by contradiction:
Let {an} be a bounded, decreasing sequence. Assume for contradiction

that it is not Cauchy. Then there exists a k0 such that for all numbers an in
the sequence we can always find one with higher index that is farther from
an than 2−k0. This way we reach the lower bound of the sequence in finitely
many steps, which is a contradiction.

That is, we have proved ∀k¬¬∃n∀m
(|an − an+m| < 2−k

)
.1 It therefore

seems that we need a whole sequence of Σ0
2-DNE instances to prove PCM−

ar.
Since we know that Σ0

1-LEM is weaker than Σ0
2-DNE (Theorem 4.12) this is

not satisfactory. Instead we have the following:
1In [17] p. 110 this is proved formally. The name non-oscillating is used for a sequence

satisfying ∀k¬¬∃n∀m
(|an − an+m| < 2−k

)
— the negative translation of the Cauchy cri-

terion.
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Alternative proof of Theorem 6.8. By scaling the sequence we may assume,
without loss of generality, that 1 is an upper bound. By induction on k we
show that

∀k∃i ∈ {1, . . . , 2k}∃n∀m

(
i − 1

2k
≤ t̃(n + m) ≤ i

2k

)
. (6.3)

The base case is trivial.
Induction step:
Assume that

∃i ∈ {1, . . . , 2k}∃n∀m

(
i − 1

2k
≤ t̃(n + m) ≤ i

2k

)
.

With Σ0
1-LEM we can prove

∃n

(
t̃(n) <

2i − 1

2k+1

)
∨ ¬∃n

(
t̃(n) <

2i − 1

2k+1

)
.

In the first case, using the induction hypothesis and the fact that t̃ represents
a decreasing function, we get

∃n∀m

(
(2i − 1) − 1

2k+1
≤ t̃(n + m) ≤ 2i − 1

2k+1

)
.

And therefore

∃j ∈ {1, . . . , 2k+1}∃n∀m

(
j − 1

2k+1
≤ t̃(n + m) ≤ j

2k+1

)
,

with for instance j = 2i − 1.
In the second case we have

∃n∀m

(
2i − 1

2k+1
≤ t̃(n + m) ≤ 2i

2k+1

)
,

by the induction hypothesis. And so, with j = 2k+1, we get the desired result.
From (6.3) Theorem 6.8 follows immediately.

Remark 6.10 (Strengthening). From the proof it follows that there is a term
Φ of HAω using at most R0 with type 1 → (0 → 1) such that

HAω 
 ∀f 1
(∀nΣ0

1-LEM
(
(Φ(f))(n)

)→ PCMar(f)
)

.
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So, Goodman’s theorem was not necessary in the first place. We have
included it to illustrate a somewhat pragmatic point. The development pre-
sented here was also the actual development of the proof. From the first proof
which used sophisticated proof theoretic techniques but with a straightfor-
ward idea, to the second proof which used no metamathematics but a rather
complex instance of induction.

[31] (and Goodman’s own proof) points to a way of avoiding the use of
AC, for the paper shows how Goodman’s conservation result does not extend
to subsystems of HA, where the induction axiom is restricted to Σ0

n formulas.
This suggests that a proof by induction could work, and also that it might
be a complex instance — which was how the second proof was found.

Therefore, one way of using Goodman’s theorem is to first make free use
of the axiom of choice and higher types, and then do a new proof exploiting
unrestricted induction. That this might be a gain, is suggested by results
from reverse mathematics indicating that actual mathematical practice does
not need complex induction instances — such instances are not part of nat-
ural reasoning, so to speak.

Remarks 6.7 and 6.10 show that a whole sequence of Σ0
1-LEM instances is

needed to get one PCM−
ar instance, but one instance of PCM−

ar is enough to
get one instance of Σ0

1-LEM. One might ask if our proof of Theorem 6.8 is too
crude — the equivalence could be even on the level of number parameter-
free instances. However, the following proposition answers the question nega-
tively.

Proposition 6.11. There exists a closed term t of HA such that for all closed
terms t′ of HA

HA 
 Σ0
1-LEM(t′) → PCM−

ar(t) .

Proof. Assume that

HA 
 Σ0
1-LEM(t′) → PCM−

ar(t) .

Then
HA 
 ∃l(t′(l) = 0) → PCM−

ar(t) ,

and
HA 
 ¬∃l(t′(l) = 0) → PCM−

ar(t) .

Assuming t to represent a monotone and bounded sequence, modified realiz-
ability gives us two terms ϕ, ψ representing recursive functions such that

¬∃l(t′(l) = 0) → ∀k, m
(|t(ϕ(k)) − t(ϕ(k) + m)| < 2−k

)
,
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and
t′(l) = 0 → ∀k, m

(|t(ψ(l, k)) − t(ψ(l, k) + m)| < 2−k
)

,

both hold.
In either case we find that t has a recursive rate of convergence — ϕ or

λk.ψ(l0, k) for some l0.2 We now present a primitive recursive function from
[50] for which this is not the case:3

Define a primitive recursive function by

g(m, n) =

{
0 if ∀l ≤ n¬T (m, m, l)

1 otherwise.

And let a sequence be given by

f(n) =
n∑

k=0

g(k, n) · 2−k .

Now, f is primitive recursive, monotone and bounded. Assume that it has
recursive rate of convergence b, ie.

∀k(|f(b(m) + k) − f(b(m))| < 2−m) .

We may choose b such that b(m) ≥ m. For n ≥ b(m) we have

2−m >

n∑
k=0

g(k, n) ·2−k −
b(m)∑
k=0

g(k, b(m)) ·2−k ≥
b(m)∑
k=0

(g(k, n)−g(k, b(m)))2−k .

Since 0 ≤ g(k, n)− g(k, b(m)) ≤ 1 for n ≥ b(m), looking at the m’th term of
the sum gives

g(m, n) = g(m, b(m)) for n ≥ b(m) .

Hence, ∃lT (m, m, l) if and only if ∃l ≤ b(m)T (m, m, l), which is decidable.
This contradicts the undecidability of the halting problem.

Generally speaking, the proposition argues that if we made an even more
refined analysis, PCM−

ar and Σ0
1-LEM would not be equivalent. But note also

that for our purpose, there is no reason to carry out this refinement. As
the results of this and the following chapters clearly indicate, an analysis

2Note that classical reasoning on the meta-level gives us insight in what can be proved
intuitionistically.

3A bounded, monotone, recursive sequence without recursive rate of convergence is
called a Specker sequence, referring to [50].
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on the level of parameter-free instances would hardly leave any equivalences
behind between analytic and logical principles, and it would therefore require
a different and whole new set of motivations.

Consequently, the following results shall not address the question on
whether the equivalences are on the level of number parameter-free instances
or not.

6.4 A Weak Supremum Property and Π0
1-LEM

We now turn to the treatment of Π0
1-LEM. The section consists of refinement

of results from [47]. To be faithful to the original proofs we note that without
loss of generality we may assume that an instance given by f of Π0

1-LEM is
binary and has at most one n such that f(n) = 1.

Theorem 6.12.
HA + PBV− 
 Π0

1-LEM .

Proof. Consider an instance of Π0
1-LEM given by a binary sequence {an} such

that
∀n∀m > 0(an = 1 → an+m = 0) .

For each n ≥ 1 we can construct a uniformly continuous function gn : [0, 1] →
R such that

∃r̄(Vr̄(gn) = 1) ,

∀r̄(Vr̄(gn) ≤ 1) ,

p ∈Q [0, 1] → gn(p) ∈R [0, 2−n] ,

and
q ∈Q [0, 2−n] → gn(q) = 0 .

Simply make a zigzag graph by connecting 2n+1 points in [0, 2−n] alternating
between 0 and 2−n with line segments, taking 0 as the first and 2−n as the
last point. Outside [0, 2−n] we put gn to 0. The four requirements above can
be verified in a straightforward manner.

For each x the sequence
∑m

n=1 angn(x) is a Cauchy sequence (with rate
2−n) and we let f(x) be the real number thus defined. The moduli of uniform
continuity for the gn’s can be chosen to have the form ωgn(k) := k + l(n), for
some primitive recursive l1. Since

|f(x) − f(y)| ≤ 2−n+2 + |gn(x) − gn(y)| ,

ω(k) := k + 1 + l(k + 3) is a modulus of uniform continuity for f . Now the
variation of f is bounded by 1, for assume that for some r̄, Vr̄(f) > 1. Then
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by choosing n sufficiently large also Vr̄(gn) > 1, which is a contradiction. So
by PBV− there exists two increasing functions k, h such that f = h−k. Define
the increasing function λ := h+k. Without loss of generality we assume that
λ(0) = 0. It is easily seen that the variation of f on any interval is bounded
by that of λ. The sequence

∑m
n=1 an2−n is Cauchy with rate 2−n. Let s be its

limit.
Now if ∃n(an = 1), then s = 2−n and f = gn. The variation of f = gn

on [0, 2−n] is bounded by that of λ, therefore λ(s) ≤ 1. That is, λ(s) < 1 →
∀n(an = 0). Also λ(s) > 0 means that s = 0 hence ¬∀n(an = 0).

Remark 6.13 (Strengthening). For a term Φ of HAω using at most R0, repre-
senting a type 2 functional, we have

HAω 
 ∀f 1
(
PBV(Φ(f)) → Π0

1-LEM(f)
)

.

The other direction does not come as easily. In fact, the precise strength
of PBV− is not known. PBV is proved to be equivalent to WLPO in [47],
via a definition of weak supremum. The first part of the original proof has a
counterpart in the next lemma.

Lemma 6.14.
HAω + AC0,0 + Π0

1-LEM 
 WSup− ,

where we for a sequence of real numbers in [0, 1] given by a function f 0→1

define the weak supremum principle, WSup−(f), by

∀n(f(n) ∈R [0, 1]) → ∃x1∀y1(∀n0(y ≥R f(n)) ↔ y ≥R x) .

We denote this x by wsupn f(n).

Remark 6.15. It follows from the definition that ∀n(wsupm f(m) ≥R f(n)).

Proof. By a bisection argument using Π0
1-LEM and AC0,0 we can define a

Cauchy sequence x(·) with rate 2−n such that4

∀m[∀n(f(n) ≤R x(m + 1) +Q 2−m) ∧ ¬∀n(f(n) ≤R x(m + 1))] . (6.4)

Let x1 be the real number defined by x(·). From this it follows that ∀n(x ≥R

f(n)). For assume f(n) >R x, then using Lemma 2.20 there would be an m
such that x(m + 1) +Q 2−m <R f(n), which contradicts (6.4). Now we easily
get y ≥R x → ∀n(y ≥R f(n)).

The other direction follows similarly.
4Refer to the proofs of the Proposition 8.4 and 8.14 for details of the bisection approach.
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Remark 6.16 (Strengthening). For a term Φ of HAω of type 1 → (0 → 1) using
at most R0 we have

HAω 
 ∀f 1
(∀nΠ0

1-LEM((Φ(f))(n)) → WSup(f)
)

.

The weakness of WSup− from a constructive viewpoint lies in the fact
that we do not explicitely require that there exists numbers arbitrarily close
to the least upper bound. To have this too — the full least upper bound
principle — would entail Σ0

1-LEM. This follows directly from the construction
in Proposition 6.6.

This way we also show that WSup− entails Π0
1-LEM:

Proposition 6.17.
HAω + WSup− 
 Π0

1-LEM .

Proof. We use the construction from the proof of Proposition 6.6. Define

f(m) :=

{
1 − 2−m if ¬∃n ≤ m (t(n) = 0)

2 − 2−m if ∃n ≤ m (t(n) = 0) ,

and let x := wsup(f). We can prove x ≤R
6
4
∨ x ≥R

5
4
. In the first case, we

get a contradiction to ∃n(t(n) = 0), hence x ≤R
6
4
→ ∀n(t(n) = 0). Since

∀n(t(n) = 0) implies wsup(f) ≤ 1, the other case contradicts ∀n(t(n) = 0),
ie. x ≥R

5
4
→ ¬∀n(t(n) = 0).

Remark 6.18 (Strengthening). For a term Φ of HAω of type 2 using at most
R0 we have

HAω 
 ∀f 1
(
WSup(Φ(f)) → Π0

1-LEM(f)
)

.

As mentioned, [47] proves that WSup implies PBV. This proof has not yet
been formalised and refined and the actual status of PBV− is therefore not
known.
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Chapter 7

The Strength of Π0
2-LEM and

Σ0
2-LEM

The results of this chapter will deal with the principles Π0
2-LEM and Σ0

2-LEM.
As remarked on p. 59, classically equivalent formulations of the Cauchy cri-
terion split up in a constructive setting. This is also the case for the limit
superior principle, and we shall see that the two most natural of these formu-
lations intuitionistically correspond exactly to Π0

2-LEM respectively Σ0
2-LEM.

7.1 Introducing Principles from Analysis
Definition 7.1. We give two constructively different definitions of the limit
superior principle, corresponding to the two following formalisations of “x is
limit superior of the sequence of real numbers represented by f 0→1”. Posi-
tively:

∀k
[∀m∃n >0 m

(|x −R f(n)|R ≤R 2−k
) ∧ ∃l∀i > l

(
f(i) ≤R x + 2−k

)]
.

(7.1)
Negatively:

∀k
[∀m∃n > m

(|x − f(n)| ≤ 2−k
) ∧ ¬∀l∃i > l

(
f(i) > x + 2−k

)]
. (7.2)

Now define Limsuppos(f) by

∀n(f(n) ∈Q [0, 1]) → ∃x s.t. (7.1) ,

and Limsupneg(f) by

∀n(f(n) ∈Q [0, 1]) → ∃x s.t. (7.2) .

Remark 7.2. Where operations on reals are used on a rational q, it is to be
replaced by its trivial R representation λn.q.
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7.2 Existence of the Limit Superior and Π0
2-LEM

In this section we examine the most natural formulation of the existence of a
limit superior — the negative one. It formalises “x is the largest limit point”
as “x is a limit point and any y > x is not a limit point”, as opposed to
moving the negation inside the limit point predicate; “there is a bound for
how many points are close to a strictly larger limit point candidate”.

[43] gives a Brouwerian counterexample to the lim sup principle based on
LPO. In Sect 6.2 we saw that also the monotone convergence principle implies
LPO, but intuitively this principle is much weaker than the lim sup principle.
To get a stronger reverse direction we therefore make another construction,
which in combination with Theorem 4.8 shows this intuition to be true.

Theorem 7.3.
HAω + Limsup−

neg 
 Π0
2-LEM .

Proof. Consider a Π0
2-LEM instance given by a term t0→0→0. It is easy to

check that the number parameters can be carried around in the proof (as
was explicitly done in the proof of Proposition 6.6) causing no problems,
and we shall leave them out for the sake of simplicity. Define a sequence of
rationals in [0, 1] by

f(0) :=0 0 and

f(n) :=0

{
1 −Q 2−a(n) if a(n) > a(n − 1)

0 otherwise
for n > 0 ,

where
a(n) := max{a ≤ n | ∀a′ < a∃b ≤ n(t(a′, b) = 0)} .

Note that a(·) is non-decreasing.
Let x1 be the lim sup of f as given by Limsup−

neg. We show that ¬(x >R

0 ∧ x <R 1): Assume x > 0 ∧ x < 1, which implies

∃l0(xl0+1 +Q 2−l0 ≤Q 1Q ∧ xl0+1 ≥Q 2−l0) ,

so
∃l0(x +R 2−l0−1 <R 1R ∧ x >R 2−l0−1) ,

By definition of x we have:

∀k, m∃n > m
(|x −R f(n)|R ≤R 2−k

)
,

and therefore, with k = l0 + 2,

∀m∃n > m
(
f(n) ≥ x − 2−l0−2 > 2l0−1 − 2−l0−2 = 2−l0−2∧
f(n) < 1 − 2−l0−2

)
.
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This leads to

∀m∃n > m(a(n) > a(n − 1) ∧ a(n) < l0 + 2) ,

which of course cannot be the case. Hence ¬(x >R 0∧x <R 1). By comparing
x2 to 1

2
we therefore get x ≤R 0 ∨ x ≥R 1. We can also easily prove x ≤R

1 ∧ x ≥R 0, and therefore we can prove x =R 0R ∨ x =R 1R.
For the two cases x =R 1 and x =R 0, we need the following equivalence:

∀m∃n > m(a(n) > a(n − 1)) ↔ ∀a∃b(t(a, b) = 0) .

For the direction from left to right note that if there are infinitely many
points where a(·) is strictly increasing, then a(n) takes arbitrarily large values
(proved by induction); in particular, for a given a, there exists n such that
a(n) > a. The other direction is also elementary.

Assume x =R 1R. Then, using that the operations provably respect =R,

∀k, m∃n > m(|1R −R f(n)|
R
≤R 2−k) .

And therefore a(n) > a(n − 1) has to be the case infinitely often. Hence
∀a∃b(t(a, b) = 0).

Assume x =R 0R. By definition of x with k = 2 we get

¬∀l∃i > l(f(i) >R x + 2−2) ,

and hence
¬∀l∃i > l(f(i) >R 2−2) .

We want this to imply ¬∀a∃b(t(a, b) = 0), and therefore show the other
direction without the negations. That is, assume ∀a∃b(t(a, b) = 0). By the
equivalence above, we get that

∀m∃n > m(f(n) = 1 − 2−a(n) ∧ a(n) > a(n − 1)) ,

and so
∀m∃n > m(f(n) ≥ 1 − 2−1 > 2−2) .

Remark 7.4 (Strengthening). There is a term Φ2 of HAω using at most R0

such that
HAω 
 ∀f 1(Limsupneg(Φ(f)) → Π0

2-LEM(f)) .

Proposition 7.5.

HAω + AC0,0 + Π0
2-LEM 
 Limsup−

neg .
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Proof. From AC0,0 and Π0
2-LEM we get Π0

2-CA, the comprehension axiom for
Π0

2 formulas. Let the lim sup instance be given by a term t. Π0
2-CA gives us

the characteristic function for

∀k∃l > k
(
t(l) ∈Q [ i

2j ,
i+1
2j ]
)

,

with number parameters j and i. Primitive recursively in this we define the
sequence {x′

n} such that
x′

0 := 0 ,

and

x′
n :=

{
x′

n−1 + 2−n if ∀k∃l > k
(
x′

n−1 + 2−n ≤ t(l) ≤ x′
n−1 + 2−n+1

)
x′

n−1 otherwise .

xn := x′
n+1 defines a Cauchy sequence with rate of convergence 2−n, and

therefore a real number x.
We must prove two things about x — firstly that

∀k, m∃n > m
(|x − t(n)| ≤ 2−k

)
, (7.3)

and secondly for a given k

¬∀l∃i > l
(
t(i) > x + 2−k

)
. (7.4)

For (7.3) we need the following

∀n, k∃l > k(t(l) ∈ [x′
n, x′

n + 2−n]) , (7.5)

which we show by induction in n: The base case, n = 0, is trivial. Now assume
n to be such that

∀k∃l > k(t(l) ∈ [x′
n, x′

n + 2−n]) .

We must prove

∀k∃l > k(t(l) ∈ [x′
n+1, x

′
n+1 + 2−n−1]) .

If x′
n+1 = x′

n + 2−n−1 then we have it by definition. Now assume x′
n+1 = x′

n.
Then

¬∀k∃l > k(t(l) ∈ [x′
n + 2−n−1, x′

n + 2−n]) , (7.6)

and we aim at
∀k∃l > k(t(l) ∈ [x′

n, x′
n + 2−n−1]) .
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Since Σ0
1-DNE follows from Π0

2-LEM1 (Theorem 4.8) it is enough to prove

∀k¬¬∃l > k(t(l) ∈ [x′
n, x′

n + 2−n−1]) ,

and this can be done by contradiction, since ¬¬∀ → ∀¬¬ and three ¬’s
contract into one. Therefore, assume

¬∀k¬¬∃l > k(t(l) ∈ [x′
n, x′

n + 2−n−1]) ,

which is equivalent to

¬¬∃k¬∃l > k(t(l) ∈ [x′
n, x′

n + 2−n−1]) ,

that in turn is equivalent to

¬¬∃k∀l > k¬(t(l) ∈ [x′
n, x′

n + 2−n−1]) .

By (7.6) and Σ0
1-DNE again, we also get

¬¬∃k∀l > k¬(t(l) ∈ [x′
n + 2−n−1, x′

n + 2−n]) .

These two give
¬¬∃k∀l > k¬(t(l) ∈ [x′

n, x′
n + 2−n]) ,

by pulling out the double negation and taking the largest k. We reverse the
arguments (using that double negation introduction, the reverse of Σ0

1-DNE,
is provable in HA) and get

¬∀k∃l > k(t(l) ∈ [x′
n, x′

n + 2−n]) ,

which contradicts the induction hypothesis and thereby closes the induction.
We return to the proof of (7.3). By (7.5) and |x′

n − x| < 2−n+1 we get

∀n, k∃l > k(|x − t(l)| < 2−n+2) ,

hence (7.3).
We have now proved x to be a limit point. What remains is to prove (7.4)

— that there can be no larger limit points. Assume that

∀l∃i > l
(
t(i) > x + 2−k

)
.

1These Π0
2-LEM instances do not depend on x, only on t, for they are instances of

∀jΠ0
2-LEM(t′[j]), where t′ can be defined from t by primitive recursion and j is a code

of a tuple of a natural (to be instantiated with n) and a rational (instantiated with xn)
number. Thus we do not need function parameters.
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So, by |xn − x| < 2−n,

∀n > k∀l∃i > l(t(i) > xn − 2−n + 2−k ≥ xn + 2−n) ,

which expresses that there are infinitely many t(i)’s to the right of the n’th
interval. By an induction proof similar to the one above (only slightly simpler)
one can prove this to be contradictory, and we get (7.4).

Remark 7.6 (Strengthening). There is a term Φ1→(0→1) of HAω using at most
R0 such that

HAω 
 ∀f 1(∀nΠ0
2-LEM((Φ(f))(n)) → Limsupneg(f)) .

7.3 Existence of the Limit Superior and Σ0
2-LEM

We now turn to an analysis of the positive formulation of the existence of
a limit superior. Notice in the proof of Theorem 7.3 that the pattern ¬∀∃,
from the last part of the conjunction in the definition of lim sup, gives us the
negative part of Π0

2-LEM — ie. also a ¬∀∃ pattern. The idea is now to try if
our construction also carries the positive pattern ∃∀ into the positive part of
Σ0

2-LEM.
But first we show how HA + Σ0

2-LEM, in a sense, does not distinguish
between ¬∀∃ and ∃∀.

Lemma 7.7.

HA + Σ0
2-LEM 
 ¬∀a∃bA0(a, b) ↔ ∃a∀b¬A0(a, b) ,

where A0 is quantifier-free.

Proof. The implication from right to left is provable in HA.
For the other direction we use the following Σ0

2-LEM instance:

∃a∀b¬A0(a, b) ∨ ¬∃a∀b¬A0(a, b) .

The first case is exactly the conclusion. In HA the second case is equivalent to
∀a¬∀b¬A0(a, b), which in turn implies ∀a¬¬∃bA0(a, b). Σ0

1-DNE follows from
Σ0

1-LEM (Theorem 4.8) and we therefore get ∀a∃bA0(a, b). By the premise,
this implies ⊥ and therefore also gives us the conclusion.

Corollary 7.8.

HAω + AC0,0 + Σ0
2-LEM 
 Limsup−

pos .
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Proof. Consider a Limsup−
pos instance given by a term t1. We get

HAω + Σ0
2-LEM 
 Π0

2-LEM

and so

HAω + AC0,0 + Σ0
2-LEM 
 Limsup−

neg .

Using Lemma 7.7 and |x − x̂(k)| < 2−k we get

¬∀l∃i > l(t(i) > x + 2−k) →
¬∀l∃i > l(t(i) > x̂(k) + 2−k+1)

Σ0
2-LEM→

∃l∀i > l(t(i) ≤ x̂(k) + 2−k+1) →
∃l∀i > l(t(i) ≤ x + 2−k+2) ,

and hence Limsuppos(t).
The Σ0

2-LEM instances used to strengthen Limsupneg(t) to Limsuppos(t) do
not depend on x1 — the limit superior guaranteed by Limsupneg(t) — but
only on t in a similar way to the one noted on page 70. Therefore we can get
Limsuppos(t) without using function variables in the Σ0

2-LEM instances.

Remark 7.9 (Strengthening). There is a term Φ1→(0→1) of HAω using at most
R0 such that

HAω 
 ∀f 1(∀nΣ0
2-LEM((Φ(f))(n)) → Limsuppos(f)) .

Proposition 7.10.

HAω + Limsup−
pos 
 Σ0

2-LEM .

Proof. Let Σ0
2-LEM(t) be the instance we need to prove. We use the same

construction as in the proof of Theorem 7.3 but on t′ := sg(t). From the case
lim sup(f) = 1 we directly get

∀a∃b(t′(a, b) = 0) ,

and hence
¬∃a∀b(t(a, b) = 0) . (7.7)

The other case is similar to the corresponding case from Theorem 7.3:
From lim sup(f) = 0 with k = 2 in the positive lim sup definition we get

∃l0∀i > l0(f(i) ≤ 2−2) ,
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which implies
∃l0∀i > l0(a(i) = a(l0)) .

Therefore ∀b¬(t′(a(l0), b) = 0), and so ∃a∀b(t(a, b) = 0).

Remark 7.11 (Strengthening). There is a term Φ2 of HAω using at most R0

such that
HAω 
 ∀f 1(Limsuppos(Φ(f)) → Σ0

2-LEM(f)) .
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Chapter 8

The Strength of Σ0
1-LLPO and

Σ0
2-LLPO

In this chapter we examine the principles Σ0
1-LLPO and Σ0

2-LLPO. As al-
ready mentioned in Sect. 5.2.1, the results concerning Σ0

1-LLPO will shed
light on the difference between reasoning constructively about constructive
objects and reasoning classically about constructive objects — one mode be-
ing represented by (refined) constructive reverse mathematics and the other
by (classical) reverse mathematics.

We shall see that our calibration recognises the nondeterminism in BW−

(for a sequence with more than one limit point, BW− is free to chose between
them, so to speak) since BW− turns out to be equivalent to Σ0

2-LLPO. This
shows that the reasoning that makes weak König’s lemma so interesting is
also present in BW− — only on one level higher in the logical hierarchy —
and a refined constructive reverse mathematics exposes this.

8.1 Introducing Principles from Analysis
This chapter will deal with analytic principles that express properties of
uniformly continuous functions. Recall that in the representation we use here,
a modulus of uniform continuity ωf is part of the data of f ∈ C[0, 1] (see
p. 25).

Definition 8.1. Let Max(f) denote the principle stating that if f is defined
and uniformly continuous on [0, 1] then it attains its maximum:

∀f ∈ C[0, 1]∃x ∈R [0, 1](f(x) = sup
y∈[0,1]

f(y)) .

74



A related principle is the intermediate value theorem, stating that if a
uniformly continuous function has both negative and positive values, then
somewhere it has a root.

Definition 8.2. Define IVT(f) as

∀f ∈ C[0, 1] ((f(0) ≤R 0 ∧ f(1) ≥R 0) → ∃x ∈R [0, 1](f(x) =R 0)) .

There are two different, common formulations of the Bolzano-Weierstraß
principle in the literature. One is that any bounded sequence of rationals has
a convergent subsequence. The other states the existence of a limit point. In
this treatment we shall look at the simpler, latter one.

Definition 8.3. Define BW(f) as

∀n(f(n) ∈Q [0, 1]) → ∃x ∈R [0, 1]∀k, m∃n > m(|f(n) −R x|R ≤R 2−k) .

8.2 Attainment of the Maximum
We show the Max− principle to be equivalent to Σ0

1-LLPO in the present
section.

Proposition 8.4.

HAω + AC0,0 + Σ0
1-LLPO 
 Max− .

Proof. The construction is again performed using bisection. First we prove

∀n∀j < 2n∃i ∈ {0, 1}(¬S(j, n) → ¬S(2j + i, n + 1)
)

,

where
S(j, n) :≡ sup

y∈[
j
2n ,

j+1
2n ]

f(y) < sup
y∈[0,1]

f(y) .

Recall that the supremum of f can be defined in HAω using at most R0 due
to the fact that f is given with a modulus of uniform continuity (cf. [29]).

For given j, n assume ¬S(j, n). To find an i such that ¬S(2j + i, n+1) we
shall use Σ0

1-LLPO: Assume S(2j, n+1)∧S(2j +1, n+1). Then also S(j, n),
which is a contradiction and we get ¬(S(2j, n + 1) ∧ S(2j + 1, n + 1)). S
is a Σ0

1 formula (it has an ∃ quantifier due to the definition of <R) and we
therefore, by applying Σ0

1-LLPO, get ¬S(2j, n + 1)∨¬S(2j + 1, n + 1); hence
the desired i.
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Now AC0,0 gives a binary function finding this i:

∃g0→1 ≤0→1 λm, n.1∀n, j < 2n
(¬S(j, n) → ¬S(2j + g(n, j), n + 1)

)
.

Define the function x′ to give the left interval endpoints:

x′(n) :=

{
0 if n = 0
2x′(n−1)+g(n−1,x′(n−1)·2n−1)

2n otherwise
,

and speed it up by x(n) := x′(n + 1) so that x(·) defines a Cauchy se-
quence with rate 2−n and hence a real number. This and the fact that
∀n¬S(2n+1x(n), n + 1) are established by simple induction proofs. It only
remains to prove f(x) ≥ supy∈[0,1] f(y).

Let ω be the modulus of uniform continuity of f . The definition of x
ensures that

∀k

(
sup

y∈[x(ω(k)+1),x(ω(k)+1)+2−ω(k)−2]

f(y) = sup
y∈[0,1]

f(y)

)
,

and therefore, by [56, 6.1.9],

∀k, l∃y ∈ [x(ω(k) + 1), x(ω(k) + 1) + 2−ω(k)−2](f(y) > sup
y∈[0,1]

f(y) − 2−l) .

Since

|y − x(ω(k) + 1)| < 2−ω(k) → |f(y)− f(x(ω(k) + 1))| < 2−k ,

we get
∀k(f(x(ω(k) + 1)) > sup

y∈[0,1]

f(y) − 2−k+1) .

Furthermore
|f(x(ω(k) + 1)) − f(x)| < 2−k ,

since |x − x(ω(k) + 1)| < 2−ω(k). Combining these two we find that

∀k(f(x) > sup
y∈[0,1]

f(y) − 2−k+2) ,

which by [56, 5.2.11] is equivalent to supy∈[0,1] f(y) ≤ f(x).

Remark 8.5 (Strengthening). There is a term Φ1→(0→1) of HAω using at most
R0 such that

HAω 
 ∀f 1(∀nΣ0
1-LLPO((Φ(f))(n)) → Max(f)) .
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The following proposition is proved in two steps in [56, 6.1.10+5.2.12]
by a natural detour over the (non-constructive) principle of totality of ≤R:
∀a1, b1(a ≤R b ∨ b ≤R a).

Proposition 8.6.
HAω + Max− 
 Σ0

1-LLPO .

Examining the proof we again find the following.

Remark 8.7 (Strengthening). There is a term Φ2 of HAω using at most R0

such that
HAω 
 ∀f 1(Max(Φ(f)) → Σ0

1-LLPO(f)) .

8.3 The Intermediate Value Theorem
It is well-known that the principle of attainment of the maximum implies the
intermediate value theorem. For consider an instance IVT(f) with f ∈ C[0, 1]
and f(0) ≤ 0 ∧ f(1) ≥ 0. Then g := − |f | ∈ C[0, 1], and a maximum for g is
easily seen to be a root of f . Hence by Proposition 8.4 we get,

Corollary 8.8.
HAω + AC0,0 + Σ0

1-LLPO 
 IVT− .

Remark 8.9 (Strengthening). The mapping f �→ − |f | can be implemented
by a term of HAω. Hence, there is a term Φ1→(0→1) of HAω using at most R0

such that
HAω 
 ∀f 1(∀nΣ0

1-LLPO((Φ(f))(n)) → IVT(f)) .

On the other hand results from recursive mathematics might suggest that
IVT− is strictly weaker than Max−:

It is known that for a computable function f , f(0) ≤ 0 and f(1) ≥ 0,
there exists (in a classical sense) a computable root. We sketch the proof.
There are two cases: Either f has a root in some rational number, or it does
not. The rational numbers are computable, which closes the first case. In
the second case we split the interval in two and evaluate f at c, the point
of division. This is a rational point and so we know that f(c) = 0 — hence
f(c) < 0∨ f(c) > 0. In either of these subcases we end in a situation like the
initial. Thus we can define a Cauchy sequence converging towards a root of
f . For full details see [46, 0.6.8].

This rather positive result does not have a counterpart for the Max− prin-
ciple. In [51] a computable function with no computable point of maximum is
constructed. In spite of this mismatch between Max− and IVT−, the following
proposition shows the two to be equivalent over HA + AC0,0.
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Proposition 8.10.
HAω + IVT− 
 Σ0

1-LLPO .

The proof is a standard example of a Brouwerian counterexample and
can be found in [56, 6.1.2] or even in Brouwer’s own [5].

Remark 8.11 (Strengthening). There is a term Φ2 of HAω using at most R0

such that
HAω 
 ∀f 1(IVT(Φ(f)) → Σ0

1-LLPO(f)) .

As an immediate consequence of the proposition we have the first part of
the following.

Corollary 8.12. (i) HAω + AC0,0 
 IVT− ↔ Max−

(ii) HAω + QF-AC0,0 
 IVT− → Max−

Remark 8.13. For two schemata S1 and S2, H 
 S1 → S2 means “for all terms
t2[n] of HA there exists a term t1[m] of HA such that H 
 ∀mS1(t1[m]) →
∀nS2(t2[n])”.

Proof. (i) is immediate. (ii): If it were the case, then also

PAω + QF-AC0,0 
 IVT− → Max− .

But PAω + QF-AC0,0 
 IVT− (cf. [49, II.6.6]) and PAω + QF-AC0,0 
 Max−,
since

HEO |= PAω + QF-AC0,0 and HEO |= Max− .

([54, 2.4.11] and the above mentioned [51].)

One might think that the project of this paper, which could be seen as
a first attempt to do a refined, intuitionistic reverse mathematics, only dis-
tinguishes more mathematical principles than classical reverse mathematics.
The argument being, that intuitionistic logic as a restriction of classical logic
proves fewer equivalences, and the refinement only contributes to this. From
the example above we see that this is not the case; classical reverse math-
ematics distinguishes Max− and IVT−, but intuitionistically they should be
identified.

The corollary pinpoints the reason for this. Identifying Max− with IVT−

requires application of axiom of choice for arithmetical formulas, AC0,0
ar . As

AC0,0
ar only makes the interpretation of the logical connectives and quantifiers

of intuitionistic logic explicit, HAω + AC0,0
ar is a reasonable constructive and

robust system; we even saw in Chap. 3 that the full AC principle preserves
a constructive interpretation. Adding AC0,0

ar to a classical system (like PAω),
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on the other hand, has the unwanted consequence that both Max− and IVT−

become provable (and therefore trivially equivalent) along with full arith-
metical comprehension — which in turn gives much stronger theorems like
Bolzano-Weierstraß and existence of lim sup.

So IVT− is provable in RCA0 and therefore “constructive” in the sense
of [49]. But we saw that in our intuitionistic setting, it allowed to derive
Σ0

1-LLPO and therefore cannot be constructive. The reason is that the proof
sketched above does not give a method that finds the root.

To have classical reverse mathematics recognise the intermediate value
theorem as non-constructive, it is necessary to either formulate both princi-
ples such that they incorporate full uniformity, which for the intermediate
value theorem amounts to

there is a functional mapping continuous functions f on [0, 1] with
f(0) ≤ 0 ∧ f(1) ≥ 1 to a root of f .

Or as a compromise,

for a sequence of continuous functions fn on [0, 1] with f(0) ≤
0 ∧ f(1) ≥ 1 there exists a sequence xn of roots.

The first approach leaves the domain of second order arithmetic, and is there-
fore not treated in [49]. It is covered in [25, 3.14], which proposes the so-called
“higher order reverse mathematics”.

The compromise is treated in [49, Exercise IV.2.12] where it is found to
be equivalent to WKL0 over RCA0.

8.4 Bolzano-Weierstraß
Proposition 8.14.

HAω + AC0,0 + Σ0
2-LLPO 
 BW− .

Proof. The proof is similar to that of Proposition 7.5.
We consider a BW− instance given by a term t1 satisfying ∀n(t(n) ∈Q

[0, 1]).
As in Proposition 7.5 and Proposition 8.4 we follow the classical bisection

approach. Compared to Proposition 7.5 the difference is that we now cannot
be sure to always find the rightmost interval with infinitely many points, and
therefore we cannot always find the largest limit point — the limit superior.

We make a definition similar to the one used in the proof of Proposi-
tion 8.4:

S(j, n) := ∀a∃b > a(t(b) ∈Q [ j
2n , j+1

2n ]) ,
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and we shall prove

∀n∀j < 2n∃i ∈ {0, 1}(S(j, n) → S(2j + i, n + 1)) .

For given n, j assume S(n, j). We aim at using Σ0
2-LLPO to find an i such

that S(2j + i, n + 1). Therefore we assume

∃a∀b > a(t(b) ∈ [ 2j
2n+1 ,

2j+1
2n+1 ]) ∧ ∃a∀b > a(t(b) ∈ [2j+1

2n+1 ,
2j+2
2n+1 ]) .

Then also
∃a′∀b > a′(t(b) ∈ [ 2j

2n+1 ,
2(j+1)
2n+1 ]) ,

which is a contradiction. Hence

¬ (∃a∀b > a(t(b) ∈ [ 2j
2n+1 ,

2j+1
2n+1 ]) ∧ ∃a∀b > a(t(b) ∈ [2j+1

2n+1 ,
2j+2
2n+1 ])

)
.

Σ0
2-LLPO now gives us an i ∈ {0, 1} such that S(2j + i, n + 1). By AC0,0 we

get a binary function g1 finding this i, and by primitive recursion we define
the functional x(·) as in the proof of Proposition 8.4 to give left interval
endpoints with rate 2−n:

x′(n) :=

{
0 if n = 0
2x′(n−1)+g(n−1,x′(n−1)·2n−1)

2n otherwise ,

and x(n) := x′(n+1). Let x denote the real number thus defined. By induction
we easily get ∀nS(2n+1x(n), n + 1), ie.

∀n, a∃b > a(t(b) ∈ [x(n), x(n) + 2−n−1]) . (8.1)

We still need to prove that x is a limit point, ie.:

∀n, a∃b > a(|x − t(a)| ≤ 2−n) .

This follows, as in the proof of Proposition 7.5, from the fact that x(·) is
Cauchy with rate 2−n and (8.1).

Remark 8.15 (Strengthening). There is a term Φ1→(0→1) of HAω using at most
R0 such that

HAω 
 ∀f 1(∀nΣ0
2-LLPO((Φ(f))(n)) → BW(f)) .

Theorem 8.16.
HAω + BW− 
 Σ0

2-LLPO .
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Proof. Let the Σ0
2-LLPO instance be given by two terms t1 and t2, such that

the premise in Σ0
2-LLPO is satisfied, ie.

¬ (∃a∀b(t1(a, b) = 0) ∧ ∃a∀b(t2(a, b) = 0)) .

Define

a(n) := max

{
a ≤ n

∣∣∣∣∣ a = 0∨∀a′ ≤ a∃b ≤ n(t1(a
′, b) = 0)∨

∀a′ ≤ a∃b ≤ n(t2(a
′, b) = 0)

}

and then

f(n) :=

{
2 + 2−a(n) if ∀a′ ≤ a(n)∃b ≤ n(t1(a

′, b) = 0)

2−a(n) otherwise .

Let x be the limit point guaranteed by BW−(f). We are going to prove
x ≥ 0 ∧ x ≤ 2 ∧ ¬(x > 0 ∧ x < 2). As in the proof of Theorem 7.3 we then
get x = 1 ∨ x = 2. Finally we shall show

[x = 2 → ∀a∃b(t1(a, b) = 0)] ∧ [x = 0 → ∀a∃b(t2(a, b) = 0)] .

But first assume x > 2. We then easily get a k0 such that

∀m∃n > m(f(n) ≥ 2 + 2−k0) .

Hence
∀m∃n > m(a(n) ≤ k0) ,

which by the monotonicity of a(·) gives

∀n(a(n) ≤ k0) ;

that is,

∀n(∃a ≤ k0+1∀b ≤ n(t1(a, b) = 0)∧∃a ≤ k0+1∀b ≤ n(t2(a, b) = 0)) . (8.2)

Now, in PA we have

∀n∃a ≤ k0 + 1∀b ≤ n(t1(a, b) = 0) → [∀a ≤ k0 + 1∃b(t1(a, b) = 0) → ⊥] ,

by CP, the collection principle (cf. Definition 2.16). So by the negative trans-
lation we have

∀n∃a ≤ k0 + 1∀b ≤ n(t1(a, b) = 0) → [¬∀a ≤ k0 + 1¬¬∃b(t1(a, b) = 0)] ,
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in HA. Using that ¬∀¬¬∃ gives ¬¬∃∀¬ in HA, we get

¬¬∃a ≤ k0 + 1∀b(t1(a, b) = 0) ∧ ¬¬∃a ≤ k0 + 1∀b(t2(a, b) = 0) ,

from (8.2). By pulling out the double negations we get a contradiction to
the premise of Σ0

2-LLPO. The same way we can get a contradiction from
x > 0 ∧ x < 2.

Since x ≥ 0 is trivial, we now, by the preliminary arguments, have x =
0 ∨ x = 2.

Assume x = 2. We get

∀k, m∃n > m(|2 − f(n)| ≤ 2−k) ,

hence,

∀k ≥ 2∀m∃n > m(2−a(n) ≤ 2−k ∧ ∀a′ ≤ a(n)∃b ≤ n(t1(a
′, b) = 0)) ,

which implies
∀a∃b(t1(a, b) = 0) .

If the “otherwise” case in the definition of f occurs, we must have ∀a′ ≤
a(n)∃b ≤ n(t2(a

′, b) = 0) by definition of a(n). Analogously we thus get
∀a∃b(t2(a, b) = 0) if x = 0.

Remark 8.17 (Strengthening). There is a term Φ2 of HAω using at most R0

such that
HAω 
 ∀f 1(BW(Φ(f)) → Σ0

2-LLPO(f)) .
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Chapter 9

Concluding Remarks

We have provided a series of equivalences between semi-classical logical prin-
ciples and formalised theorems of analysis, and discussed the proof theoretic
interpretation of the logical principles. For each of the principles in the first
two levels of the hierarchy, except the DNE-principles, an equivalent analytic
principle has been found. On the other hand, we have in all cases except one
only provided one equivalence in an attempt to do a breadth-first investiga-
tion of refined constructive calibration theory.

In this final chapter we look at the results in the light of our motivations
and discuss the next level of the investigation.

Motivations Revisited

In Chap. 1 we categorised our motivations in four groups. Here we go through
the groups and conclude on how our results shed light on the motivations
and vice versa.

Limit Computable Mathematics. A weak part of the hierarchy that was
established in [1] has been found to reflect a substantial amount of mathe-
matics. Also, the generalised constructivity provided by LCM provides a way
of understanding certain restricted forms of classical reasoning. First of all,
we have seen that PCM−

ar is limit realizable in that it is implied by Σ0
1-LEM

over HA. But we have also seen that PCM−
ar entails Σ0

1-LEM and therefore
requires a very strong form of limit computability.

BW− was found to be equivalent to Σ0
2-LLPO and therefore generally not

limit realizable. Still, the technique used to tell the levels in the logical hier-
archy apart provides an understanding of BW−. We saw that HA + Σ0

2-LLPO
reduces to HA[g] + (ε) + Σ0

1-LLPO[g], where (ε) expresses that g is a Σ0
1-LEM
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oracle — hence limit computable. That is, BW− features as weak König’s
lemma only on one level higher in the hierarchy.

Reverse Mathematics and Proof Mining. The logical hierarchy pro-
vides a robust system for calibrations. We saw that some principles that are
identified in reverse mathematics, are distinguished in our context. We also
argued that the new distinctions were valuable in that it is motivated by
LCM and proof mining. On the other hand, new identifications, IVT− and
Max−, were made, and we showed that the classical distinction was due to
the lack of weak choice axioms in RCA0.

The informal constructive reverse mathematics of [21] identifies for exam-
ple PCM and BW because principles are considered with function parameters.
We have found that using the restriction to function parameter-free instances
to prohibit iteration of the principles, reveals that BW− is very much differ-
ent from PCM− — as also the refinement in the classical setting shows. The
difference between PCM− and BW− is akin to that between intuitionistically
provable theorems and weak König’s lemma. And it has turned out that on
the level of logic, the generalised weak König’s lemma can be expressed in
the Σ0

n-LLPO principles.
The discussion in Sect. 4.3 on the various proof interpretations and their

connection to the logical hierarchy translates to the mathematical by the
equivalences. So a proof system including the intermediate value theorem and
Markov’s principle has the bound extraction property as does also a system
with the weak supremum principle. Note that the oracle interpretation on
for instance level 2 corresponds to computability in the jump ∅′ (cf. [48]), so
for instance from a proof using BW− and Σ0

2-DNE one can extract bounds
that are computable in ∅′.

Constructivism and Mathematics. As it is noted in reverse mathemat-
ics, large parts of mathematics can be carried out in very weak proof systems.
This thesis suggests that this is true also when weak is taken in the sense of
the semi-classical principles since the diversity of theorems studied here only
require principles of level ≤ 2.

The three principle-types Σ0
n-LLPO, Π0

n-LEM, Σ0
n-LEM seem to capture

the non-constructivity in mathematics. It is note-worthy that the Σ0
n-DNE

principles are not represented in any equivalence. It did feature in the discus-
sion of PCM−

ar (Sect. 6.3), where we saw it to be a sufficient but not necessary
principle.
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Future Directions

There are still two very concrete problems that need to be addressed. One is
the status of PBV− in our context, which is yet to be sorted out. The other
has to do with IVT.

We know that for a computable continuous function f : [0, 1] → R with
f(0) ≤ 0 ∧ f(1) ≥ 0 there exists a computable root, but we can in general
not find the root given f ; this is reflected by the fact that the proof of the
existence sketched in Sect. 8.3 uses Σ0

1-LEM (and later Σ0
1-DNE). On the other

hand we know that using only Σ0
1-LLPO, we can find a root without requiring

it to be computable. Yet, it is not known if Σ0
1-LEM is actually needed above

— that is, does the intermediate value theorem with the requirement that
the root is computable imply Σ0

1-LEM in our setting? If so, this would mean
that if one insists on getting a computable root then a ∅′ oracle is needed,
but just to find some root, a so-called low-degree1 oracle is sufficient.
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