Can proofs be animated by games?

Susumu Hayashi*

Faculty of Engineering, Kobe University, Japan
susumu@shayashi. jp
http://www.shayashi. jp

Abstract. Proof animation is a way of executing proofs to find errors in
the formalization of proofs. It is intended to be “testing in proof engineer-
ing”. Although the realizability interpretation as well as the functional
interpretation based on limit-computations were introduced as means for
proof animation, they were unrealistic as an architectural basis for ac-
tual proof animation tools. We have found game theoretical semantics
corresponding to these interpretations, which is likely to be the right
architectural basis for proof animation.

1 Introduction -proof animation-

In this paper, we will discuss a possible application of game theoretic semantics
to proof animation. Proof animation is an application of an extended Curry-
Howard isomorphism. The notion of “proofs as programs” reads “if a program
is extracted from a checked proof, then it does not have bugs.” Proof animation
is its contrapositive, “if a program extracted from a proof has a bug, then the
proof is not correct.” The objects of proof animation are not correct programs
but formalized proofs.

By the late 80’s, many people had still believed that formally verified pro-
grams would not have bugs. But, this has been proved wrong. Now, many soft-
ware engineers have realized bugs in the formalization are far more serious than
the bugs in the implementation. You cannot formally prove that your formal
specifications correctly reflect your informal intentions or requirements in your
mind. It was believed that building a system according to detailed specifications
is more difficult than writing such a specification according to informal inten-
tions or requirements. Probably, this was the right attitude at the time. However,
the time has past and the environments for software engineering have changed.
Thanks to excellent tools and software engineering technologies, such as design
patterns, building systems correct to specifications has become much easier than
before. In the changeable modern business environments, specifications tend to
be changed even in the middle of a project. Requirement analysis, compliance
test and validation are thus becoming more difficult and important in software
development processes than verification.

* Partly supported by Monbushyo Kakenhi grant 1005-16650028. The address will
change soon. Consult Web page for the new address.

The same will happen in formal proof developments. Although the proof
checkers and methodologies to use them are not powerful enough for everyday
usages in software developments, they are becoming ever more and more realis-
tic. When formal verification technologies become a reality technology, the last
problem left would be “how to show correctness of formalization.”

Let us illustrate this problem by an example used in [9]. Assume that we
are developing a formal theory of a metric ||z|| on the interval [m,n] of the set
of integers by the distance from n. For example, ||n|| is 0 and ||m|| is n — m.
A linear order is defined by means of the metric so that z is smaller than y iff
[|lz]| < ||ly]|, i-e., = is closer to n than y. We wish to prove a minimum number
principle for the ordering;:

32Ny Pon(f(2), f(y), (1)

where f is any function from the natural numbers to the interval and Py, »(z,y)
represent “z is less than or equals to y in the ordering”. It maintains that there is
some x such that f(x) is the minimum among f(0), f(1), ..., namely, a minimum
number principle for the ordering P, ».

The metric of € [m,n] is formally defined by n — z. Thus, the formal
definition of P,, ,,(x,y) should be n—y > n—x. Suppose that our proof language
has the built-in predicate for > but not for <. Thus the >-sign was used instead
of <-sign. However, it is a confusing usage of the inequality. It is plausible that
we type n—x > n—y by aslip of fingers in the definition of P, ,(z,y). Suppose
this happened. Then, the order is defined by its reverse. Can we find this error
by developing the fully formalized proof of the minimum number principle for
the ordering Pp, ,,?

The answer is no. We can develop a formal proof of the principle with the
wrong definition of P, »(z,y) given above. This is because the ordering is iso-
morphic to its reverse. Formal proofs do not help us to find the error, since the
wrong definition does not imply any contradictions. Only one thing is wrong
with it, that is, the definition is not the one which we intended in our mind.
Since the intention is in our mind, there is no formal way to compare it with the
formal definition.

In the case of program developments, we can check our system against our
intention by executing it. If the system is correct w.r.t. a specification, then
we can check specifications against our intention through validating the system.
This kind of activities are called walidation [16]. Verification is to ask “Did we
build the system right?”. Validation is to ask “Did we build the right system?”.
We may build a wrong system which is right relative to wrong specifications.

Can we do validation in formal proof developments? In the example given
above, if our proof checker is smart enough to evaluate truth values of simple
formulas, we can check if a definition is correctly formulated. We expect P 7(6, 3)
holds, but the proof checker would return false by evaluating 7 — 6 > 7 — 3.

When we can execute formalized notions, we can validate them. Quite often,
specifications of realistic softwares are interactively executable by simulators,
which are sometimes called animators. Thus, executing specifications by such

tools are sometimes called specification animation. Using this terminology, the
evaluation of P 7(6,3) with the result false may be called “definition anima-
tion.”

Although a large part of mathematics is non-executable, constructive math-
ematics is known to be executable by means of Curry-Howard isomorphism.
This means that constructive mathematics can be animated. For example, the
animation for P» 7(6,3) above, may be regarded as an execution of a construc-
tive proposition Vz,y.(Ps 7(z,y) VP 7(x,y)). Then, the animation of definition
turns to be an animation of the proof. The activity of animating proofs to vali-
date them is called proof animation.

2 Limit interpretations

Constructive mathematics can be animated and validated through their execu-
tions (see [8]). However, a large part of mathematics is non-constructive. Clas-
sical proofs have been known to be executable by some constructive interpre-
tations, such as continuation. However, they are known locally legible but not
globally legible. We can understand how each classical rule is executed. We call
this property local legibility. However, when the interpretations are applied to
actual mathematical proofs, even for the simplest proofs such as the proof of
the minimum number principle, the resulting algorithms are too complicated to
understand. We can understand their behaviors in only a few exceptional cases
with non-trivial efforts. We call this difficulty global ilegibility.* . If proof anima-
tion is for finding useful information such as bounds for solutions and algorithms
in classical proofs as proof mining in [14], global ilegibility is not a real obstacle.
However, our aim is to test proofs to our intentions just as engineers test sys-
tems. Proof executions must be light and legible as test runs of programs. Thus,
the global ilegibility is an essential defect for proof animations.

In [7,15], we introduced a new realizability interpretation to overcome the
global ilegibility. The definition of our new realizability interpretation of logical
connectives is the same as the original one by Kleene. However, the recursive
realizers are replaced with the AJ-partial functions. Since the A9-partial func-
tions satisfy an axiom system of abstract recursion theory, everything goes just
as in the case of the original realizability interpretation [15].

According to such a realizability interpretation, some semi-classical prin-
ciples are valid, e.g., the principles of excluded middle for X¢-formulas hold.
The fragment of classical mathematics valid by this interpretation was named
LCM, Limit-Computable Mathematics. It has been proved that there exists a
fine hierarchy of classical principles in [1]. According to the results of [1], LCM
corresponds to the lower part of the hierarchy. We cannot therefore derive all
the classical theorems in LCM, but it is known that quite a large variety of non-
constructive theorems belong to LCM: see, e.g.[18]. For example, the minimal
number principle for the natural numbers (MNP)

2. Vy.(f(z) < f(y)),

! Local and global legibility are terminologies due to Stefano Berardi

where z and y are natural numbers, holds in LCM if f is recursive.

LCM uses learning theoretic notions to make semi-classical proof execution
legible. Let us explain it with the example of MNP. There is no recursive realizer
for MNP. However, there is a AS-function computing z. It is known that AY-
functions represent learning algorithms called inductive inference in Learning
theory [17]. An inductive inference is a try-and-error algorithmic process to find
a right solution in finite time.

Here is an inductive inference for MNP. At the beginning, we temporarily
assume that f(0) is the minimal value among f(0), f(1), Then, we start to
compare the value of f(0) with the values f(1), f(2), ... to confirm our hypoth-
esis. If we find f(n;) smaller than f(0), then we change mind and assume that
f(ny1) is the real minimal value instead. We repeat the process and continue to
find f(0) > f(n1) > f(n2) > Since the sequence is decreasing, we eventually
reach the minimal value f(n,,) in finite time. Then, we learned or discovered a
right value for z.

Hilbert’s main idea of the proof of the finite basis theorem in [10] was this
argument on the learning process (see [7]). By applying the argument repeat-
edly to streams of algebraic forms, Hilbert gave a proof of his famous lemma,
which opened the door to the modern abstract algebra. By the aid of limiting
realizability interpretation, it is not so difficult to read the learning process of
a basis of any ideal of algebraic forms recursively enumerated, from his proof in
1890 paper.

3 Animation via games?

Execution of a proof in LCM is a kind of learning process as illustrated above.
Using an analogy with learning processes, we can understand algorithmic con-
tents of proofs of LCM rather intuitively. Nonetheless, it has not been known if
such learning algorithms can be fully automatically extracted from formalized
versions of such informal proofs.

According to our experiences with the PX system [6], algorithms which are
automatically extracted from the proofs based on the mathematical soundness
theorem or the original Curry-Howard isomorphism are much more complicated
and illegible than the ones which human beings read from texts with realizabil-
ity or Curry-Howard isomorphism in their minds. Human beings unconsciously
refine and simplify extracted codes. In the PX system, we introduced some opti-
mization procedures to mimic humans’ natural refinements and simplifications.
Natural codes could thus be extracted from proofs by the PX system.

We have to do similar things to build an LCM animator, and it is a non-trivial
technological task. Furthermore, there is a rather serious theoretical obstacle. In
the algorithmic learning theory, an inductive inference is defined by a limiting
recursive function such as f(z) = lim,, .g(n,z), where g is a recursive function
and n is a natural number. We compute ¢(0,x), g(1,z), ... and, if it stops chang-
ing at g(n,z), then the value g(n,z) is the value of the limit. Namely, the limit
is “computed” through the discrete time line. Careful inspections of the sound-

ness theorem in [15] shows that the learning processes extracted from proofs
by the extraction method given there use a unique “global time” for the learn-
ing. However, Hilbert’s proof in [10] apparently uses plural “local times”. In a
sense, a local time is generated by a occurrence of the principle of ¥%-excluded
middle. Since ¥¢-excluded middle is repeatedly used in Hilbert’s proof, we have
several limits, each of which has its own internal clock in the learning algorithm
associated to Hilbert’s proof.

It is not difficult to read these learning algorithms based on plural “local
times”, when you look at Hilbert’s original proof texts.? However, we do not
have any formal way to represent such intuition yet. This has been the main
obstacle to build a real proof animation tool based on LCM. However, recently,
a game theoretic equivalent of the interpretation has been found [3,9], and we
expect that it will give a right framework to solve this problem.

3.1 1-backtracking game

Game theoretical semantics of logical formulas are known to be a good substitute
for Tarskian semantics of logic [13]. It is said that game semantics is easier to
learn than Tarski semantics.

Coquand [5] introduced a game theoretical semantics of classical first order
arithmetic. It allows Eloise, the player for existential quantifiers, to do back-
tracking as she likes. On the other hand, her opponent Abelard, the player for
universal quantifiers, is not allowed to backtrack. Due to backtracks, existence of
recursive winning strategy for Eloise was proven to be equivalent to the validity
of the formula in Tarski’s semantics. In standard games, e.g., II°-true sentences
normally has a winning strategy at least of A°_,. In this paper, Coquand’s
games will be referred to as backtracking games or full backtracking games. Since
strategies are recursive, the backtracking game may be regarded as a way of
executing classical logic.

It is known that this semantics still suffers global ilegibility, even though it is
much more legible than the other constructivization of classical logic. However,
when backtracks of the games are restricted to simple backtracks, the game
semantics coincides with LCM semantics and become very legible. Such a game
is called 1-game or I-backtracking game. We now give its definition. To do so,
we will define some game theoretic notions.

Definition 1 A position of a play is a finite sequence of moves, which are ex-
pressed as [z = 0], [zt = 0;a = 3;b = 8y = 11], [z = 0;a = 3;b = 8]. The
empty position is []. For example, a position [z; = T;y1 = 11522 = 18;y> = 4]
for 3z, . Vy,.3x2 . Vys.21 +y1 < o2 + o leads to the true formula 7 + 11 < 18 +/4,
and represents a win by Eloise. Assignments such as x; = 7, y; = 11,... in
a position are called moves. In the present paper, we assume that each player

2 His proof is the essentially the one of Dixon’s lemma taught in the contemporary
algebra courses. However, Hilbert’s original proof is much more “learning theoretic”
than the contemporary counterparts. Especially, the discussions in his course at
Gottingen July 5th 1897 shows its learning theoretic nature[11].

moves alternatively. This restriction is not essential, and makes things easier. If
the last move of a position is played by a player A, we say that A played the
position. EndOfDef

Let us note that the position of a play was called “occurrence” in [5]. In our [9],
the notion of position was more restrictive so that the end of a position must be
played by Abelard. In the present paper, we relax the condition. Notations are
different, but these two notions are essentially the same.

Position S; is a subposition of position Sy iff S; is an initial segment of S5.
Namely, S; is obtained from Sy by “popping up” some rounds from the tail.
Thus, we do not need to memorize stack contents, when we do backtracking. We
now formulate 1-backtracking game.

Definition 2 A play with 1-backtracking consists of an infinite or finite sequence
of positions ug, %1, us, ... with the following conditions:

(i) It starts with empty position, ug = [].
(ii) For any position in the sequence, the last move of u,; is the opponent of
the player who played the last move of u,,.
(iii) When Eloise plays a position u,11, un+1 is an extension of a position u by
Eloise’s move, where u is a subposition of u,, and is played by Abelard.
(iv) When Abelard plays a position wn41, 4,1 is an extension of the position
,, which is played by Eloise’s move.

The game of plays with 1-backtracking is called simple backtracking game or
1-backtracking game, 1-game in short. EndOfDef

We introduce some more terminologies for the later discussions.

Definition 3 A move by Eloise (the move by the condition (iii) above) is called
a backtracking move, when u is a proper subposition of u,,. All of the other moves
are called normal moves. The normal moves are all of Abelard’s moves by the
rule (iv) and Eloise’s move by (iii) of the case u = uy,.

Note that a backtracking move not only flush a tail of stack (position), but
also adds a new move for an occurrence of existential quantifier, say 3z. The
move is said a backtracking move to Ix or backtracking to 3xr. EndOfDef

We now give an example of 1-game session. Consider a ¥9-EM (%9-Excluded
Middle):
dz.T(e,z) VVa.T (e, a). (2)

It is transformed to the following prenex normal form:
JzVa.((x >0AT(e,z— 1)) V(z=0AT" (e,a))). (3)

Eloise has the following recursive 1-backtracking strategy for it as shown below.
Observe that there is only 1-backtracking.

up: [|. The initial empty position consisting of zero moves.
ur: [z = 0]. The first move.

u2: [z = 0;a = A;]. The second move. 4, is a number played by Abelard. After
this, we have two cases. If T~ (e, A1) is true, then Eloise wins and she stops
to play. If it’s false, Eloise backtracks to Jx, i.e., backtracks to ug and moves
for 3z as follows:

ug: [z = A1 + 1]. Then Abelard plays, say a = A».

ug: [= A1 + 1;a = Az]. For any move a = A,, Eloise wins, since T~ (e, 4;)
was false and so T'(e, (A1 + 1) — 1) is true.

3.2 1-game and LCM

It has been proved that 1-game for prenex normal forms are equivalent to LCM
in the following sense:

Theorem 1 For any prenex normal formula, there is a recursive winning strat-
eqy of 1-backtracking game for Eloise iff the formula is realizable by the LCM-
realizability interpretation.

We now prove the theorem.

“Only if” direction: We prove the theorem for 3z, Vy; 3x5Vys.R. The proof
is easily extended to the general case.

Assume ¢ is Eloise’s winning strategy for 31 Vy; Ix2Vys.R. We have to define
two A9-functions f() and g(y1) such that Yy .Vya2. R(f(), 41, 9(y1), y2) holds. Note
that f() is a function without arguments as in programming languages, or an
expression for a constant.

First, we define f() and g(y;) without considering if they are AY. After we
defined them, we will prove the defined functions are AY.

Let P(¢) be the set of plays played after ¢. Since all the plays of P(¢) are
played after ¢, they must be finite. (Infinite plays cannot be won in our game
theoretical semantics.) Note that P(¢) is a recursive set.

There is a play po in P(¢) satisfying the following conditions:

1. The last position of po is of the form [z; = a;]. Namely, it consists Eloise’s
move for the first existential quantifier 3z;.

2. Let po beug, ..., un.- I ug, ..., Un,Unt1,--.,Un is an extension of pg in P(¢),
then wp41,...,u, never contains backtracking moves to 3z;.

Namely, pp is a play “stable” with respect to Jx;. Beyond the last move of the
play, any move played after ¢ never backtracks to 3z; anymore.

Then, we define f() = a;, where z; = a; is the last move for a stable play
po- There might be many stable plays. We may take the play smallest in some
fixed ordering.

We must prove such pg exists. It is proved by reductio ad absurdum. Consider
the set Sy of the plays in P(¢) satisfying the first condition for pg. Of course, it is
not empty. Assume there is no plays satisfying the second condition in S;. Then,
we can build an infinite play played after the strategy ¢. Let vg be any play in
S1. Since this does not satisfy the second condition for pg, there is an extension
vy whose last move is a backtrack to Jz;. It again belongs to Si. Repeatedly,

we can define an infinite sequence vy, vs, ... which is played after ¢. Thus there
is an infinite play played after ¢. But, it is a contradiction, since ¢ is a winning
strategy.

Now we verify that f() is AJ-definable. The first condition for py is a recursive
statement and the second condition is II9-statement. Thus, py is defined by an ex-
pression min,, P(pg), where P is a I19-formula expressing the two conditions for
po. Since any II9-predicates has AJ-characteristic functions, f() = min,, P(po)
is A9-definable.

After we defined f(), we consider the games 3x2.Vys.R(f(), b1, z2, y2) for all
b1, which are fought with ¢ after po. More formally, we consider the set P(¢) 1 po
that is the set of all the play of P(¢), for which py is an initial segment.

By essentially the same argument, we can define a “stable play” p'l’1 for Azo
for each b; in the new games, and define g(b;) from it. A play p; is a stable play
with respect to Jxo for by is a play satisfying the following conditions:

L. p1 € P(¢) 1T po
2. The last move of the last position of p; is Eloise’s move for the second

existential quantifier Jz-.
3. Let p; be ug,...,up. If ug,..., %, Upy1,...,Uy is an extension of p; in
P(¢) 1 po, then w41, ..., u, never contain backtracking moves to 3xs.

Note that all extensions of the stable play p; in P(¢) 1 po do not contain
any backtracking moves at all. Backtracking to Jx; is forbidden, since they are
extensions of pg and backtracking to dz- is forbidden by the definition of p;.

Let the last position of p; be [x; = f(), y1 = b1, 2 = az]. Then, we set
g(b1) = az. Then g(by) is again AJ-definable.

We must prove R(f(),b1,g(b1),b2) is true for any b; and bs to finish the
proof. Assume R(f(),b1,g(b1),b2) were false. Then Eloise loses for the position
[z1 = f(), y1 = b1, x2 = g(b1)]. Since ¢ is a winning strategy, Eloise must be
able to continue to play by backtracking and eventually win. Thus, P(4) 1 po
must contain a play with backtracking. But, we have shown that this cannot
happen. Thus, R(f(),b1,g(b1),b2) is true for any b; and bs. This ends the proof
of only-if direction.

“If” direction: Assume that Vy;.Vy2.R(f(),y1,9(y1),y2) holds for two AI-
definable functions f() and g(y;). There are recursive functions h(t) and k(t, y1)
(guessing functions in the terminology of learning theory) such that f() =
lim; h(t) and g(y1) = lim; k(¢,y1). Then, Eloise’s winning strategy is as follows:

She plays for h(0) for 3z;, and, after Abelard’s play b, for Vy; she plays
k(0,by) for Az,. If she wins for Abelard’s play b, for Vy-, she stops. If she
loses, she computes h(1). When h(1) changes from h(0), she backtracks
to Jx1, and restart the play using h(1) and k(1,—). When h(1) does not
changes from h(0),i.e. h(0) = h(1), she backtracks to Jx» instead, and
continue to play k(1,—).

Note that Abelard’s first play for Vy; is kept in the latter case, incrementing
t of h(t) and k(t,—). Eventually, h(t) converges to f(). Assume h(t) is stable

after ¢ > to. She never backtracks to 3z, after to, for h(t) does not change
anymore after to. Then, Abelard’s play b; for Vy; is kept forever, since Eloise
never backtracks beyond it. Eventually, k(tg, b1) converges to g(by) and then she
can win for any move for Yy». This ends the proof of if-direction.

3.3 General formulation of backtracking games and jump

The notion of 1-game has been further generalized and refined by Berardi [3].
We can associate a backtracking game bck(G) to each game G in the sense of set
theory . In the setting of [3], both players are allowed to backtrack and winning
conditions are defined even for infinite plays. This is natural from the standard
game theoretic point of view, unlike the game presented in this paper.

Remarkably, Berardi has proved that having a winning strategy for bck(G)
in a degree O is equivalent to having a strategy for G in the jump O'. Thus,
the motto is “1-backtracking represents the first order quantifiers.” We may say
that, if we are allowed to change our hypotheses on a system (or on the nature),
then we can cope with the “infinity” represented by arithmetical quantifiers.

Recall that Brouwer, Hilbert and their contemporaries in the research of the
foundations of mathematics in the 1920’s regarded arithmetical quantifiers as the
gate to the infinite world from the finite world. We may say the jump, namely
a single arithmetical quantifier, corresponds to the “smallest infinity.” Although
finitary human beings are bound to be recursive, human beings may virtually
handle the smallest infinity (or the jump) with try-and-error investigations or
experiments, i.e. 1-backtracking. It strongly suggests that the learning theoretic
notion of inductive inference would be a right kind of theoretical foundations of
researches on the notion of discovery.

3.4 1-games and proof animation

Although there are some unsolved problems with the 1-game in applying it to
proof animation, it seems to be the right framework for proof animation. In this
subsection, we will discuss the problems of “approximation” and “semantics of
implication.”

In the limiting recursive realizability in [15], more the clock (the index n of
lim,,) ticks, the closer the guesses get to the correct answer. Thus we can regard
that learning algorithms are approzimating the right answer as time progresses.
This simple notion of approximation is one of reasons why LCM-interpretation
is legible than the other approaches.

In 1-games, there is no apparent notion of clocks. However, there is a kind of
approximations. When Eloise picks, e.g. z = 7 for 3z.Vy.A(z,y), Abelard starts
to attack her hypothesis £ = 7. He may be able to give a counterexample with
a particular instance of y. Then, Eloise changes her hypothesis and continues to
play. As shown in the proof of “only if”-part of the equivalence of the theorem
above, Eloise eventually reaches a right solution for z. Namely, the more Abelard
attacks Eloise’s hypothesis, the close Eloise moves to the right answer guided by
her recursive winning strategy.

10

In other words, Eloise is approximating the right solution, pushed by test
cases given by Abelard. Namely, the set of test cases (or attacks) by Abelard
advances the clock. As the set grows, Eloise gets closer to the right answer.?

To build a 1-game animator, we need a good notion of approximation for-
mulated well. We have not found such a formulation on which a real software
system can be built. We have just started to analyze the real proofs by means of
1-games, seeking such a notion. The initial results show that it remarkably fits
our intuitive understanding of the proofs mentioned above. This suggests that
the 1-game is likely to be the right framework for proof animation. However,
more case studies are necessary.

We now discuss the problem of semantics of implication. Note that we con-
sidered only the prenex normal forms for the 1-game. We did not handle impli-
cations. Transformation of an implicational formula to the prenex normal form
already includes classical reasonings. we have to give an game theoretical inter-
pretation of implication which is equivalent to LCM-semantics of implication.

There are at least two ways to handle implication in game theoretical seman-
tics (see [12]). The standard way is to regard A — B as A+ V B, where At is
the dual game. Another way is to use the notion of the subgame. Although some
modifications are necessary, it is basically easy to extend our discussions to the
full fragment of the first order arithmetic by the subgame approach in Chapter 3
of [12]. We regard A — B as the game to play B, provided we have a free access
to a winning strategy for A. You can imagine that you are playing an online
chess game. You are pondering on your next move for a configuration B. To do
s0, you wish to know a right move for another configuration A, which may turn
up after B. You know how to win B, if you can win A. Instead of pondering on
the next move for A, you may consult a chess program (it’s an online game) how
to win A. Then A is a subgame for A — B. This scenario is natural, and easy
to understand. However, it might obscure interactions between the strategies for
A and B. To say “the strategy f for B can consult the strategy g for A”, we
mean that f is defined relative to g. Thus, the interaction is concealed in the
computation of strategy f.

On the other hand, there is a way to use backtracks to represent communica-
tion between A and B in A*V B. Since our backtrack is a kind of pops of stacks,
we may simulate recursive function calls by 1-backtracking. It is expected that
this approach and subgame approach are related.

However, from the system design point of view, these two are very different.
If we take the latter approach, the interaction between A and B becomes part of
plays of the game and it would give more legible animation of proofs. However,
we have to allow Abelard to backtrack, since we must make the game symmetric
to use the dual A+ of A. If we identify Abelard’s moves as test cases as explained
above, test cases with backtracks must be introduced. After these differences,
proof animation tools based on these two frameworks would be rather different.

3 Berardi has introduced a series of limit-interpretations whose indexes are sets of
conditions[2]. It is expected that these notions are closely related.

11

3.5 Why is 1-game legible?

We will close this section by a remark on legibility of the 1-games. Since the full
backtracking game needs only recursive strategies, there is no apparent reason
to use the 1-game instead of the full backtracking game for proof animation.
However, as already noted, the full backtracking game is not so legible as the 1-
game. The ilegibility come from the lack of “stable play”. If plays are stabilized,
then the winning strategy is essentially that of 1-games. Thus, games won by
stabilizing winning strategies must be 1-games. When, plays are not stabilized,
we cannot “approximate” the truth. When, we say A V B holds, we wish to
know which of A and B holds. In constructive mathematics, we can effectively
tell the answer. In LCM, we can approximate the truth. We may be wrong at the
beginning, but we can move closer and closer to the right answer by try-and-error
processes. The temporary guesses may oscillate between A and B, but eventually
converge. In general, we cannot know when it converges, but, for many concrete
cases, we can often find criteria by which we can see when guesses are stabilized.

We never have such stabilization for plays of the ¥9-excluded middle for
the universal ¥9-formula 3z.Vy.T (e, z,y) V Va.3b.T~ (e, a, b). A relatively simple
winning strategy for this formula in the full backtracking game is given in [9].
However, the plays after it are never stabilized. Thus, we cannot have any useful
information on which side of the disjunction operator holds, even though Abelard
plays all possible moves. Contrary to this case, in the case of the X{-excluded
middle (2) above, when 3.7 (e, x) is correct, we will observe a backtracking and
find this side is correct. When Va.T~ (e, a) holds, we will observe the plays are
stable and will have more and more confidence of the truth of Ya.T~ (e, a), as
the game is repeatedly played.

The 1-game is expected to be a restricted backtracking game. Namely, we
have found a subset of the full backtracking games, in which Eloise’s winning
strategies are guaranteed “legible” in the sense that the plays are eventually
stabilized. Note that this does not exclude the possibility of some plays in Co-
quand’s game beyond the 1-game may be legible in some particular cases. It
is quite likely that there are some important classes of classical proofs beyond
LCM, for which we can find legible computational contents through the full
backtracking game or the like.

4 Conclusion

We have briefly surveyed proof animation, limit computable mathematics and
backtracking games. We presented a version of 1-backtracking game and give
a detailed proof of its equivalence to limiting recursive realizability. We also
discussed how these notions and some results are expected to be useful for proof
animation. We are now analyzing some simple LCM-proofs such as a proof of
MNP from the ¥%-excluded middle given in [9]. Doing so, we will eventually
find the right way to handle implication semantics and approximation. After
finding the solutions, we would design and build a prototype of proof animator.

12

Then, we will see mathematical proofs, such as the ones of Hilbert’s paper [10],
animated by games.

The many materials of the present paper are outcomes of joint research with
Stefano Berardi and Thierry Coquand. I thank them for many helpful suggestions
and discussions.

References

1. Akama, Y., Berardi, S., Hayashi, S. and Kohlenbach, U.: An arithmetical hierarchy
of the law of excluded middle and related principles,

2. Berardi, S.: Classical logic as Limit Completion, -a constructive model for non-
recursive maps-, submitted, 2001, available at http://www.di.unito.it/"stefano/

3. Berardi, S., Coquand, T. and Hayashi, S.: Games with 1-Backtracking, submitted,
2005.

4. Coquand, T.: A Semantics of Evidence for Classical Arithmetic, in Géard Huet, Gor-
don Plotkin and Claire Jones, eds, Proceedings of the Second Workshop on Logical
Frameworks, 1991, (a preliminary version of [5])

5. Coquand, T.: A Semantics of Evidence for Classical Arithmetic, Journal of Symbolic
Logic, 60(1), 325-337, 1995.

6. Hayashi, S. and Nakano, H.: PX: A Computational Logic, 1988, The MIT Press,
available free from the author’s web page in PDF format.

7. Hayashi, S. and Nakata, M.: Towards Limit Computable Mathematics, in Types for
Proofs and Programs, P. Challanghan, Z. Luo, J. McKinna, R. Pollack, eds., LNCS
2277 (2001) 125-144

8. Hayashi, S., Sumitomo, R. and Shii, K.: Towards Animation of Proofs - Testing
Proofs by Examples -, Theoretical Computer Science, 272 (2002), 177-195

9. Hayashi, S.: Mathematics based on Incremental Learning, -Excluded middle and
Inductive inference-, to appear in Theoretical Computer Science.

10. Hilbert, D.: Uber die Theorie der algebraische Formen, Mathematische Annalen 36
(1890), 473-531.

11. Hilbert, D.: Theory of Algebraic Invariants, translated by Laubenbacher, R.L.,
Cambridge University Press, 1993.

12. Hintikka, J. and Kulas, J.: The Game of Language, Reidel, 1983.

13. Hintikka, J. and Sandu, G.: Game-Theoretical Semantics, in Handbook of Logic
and Language, Part I, edited by van Benthem Jan F. A. K. et al., 1999.

14. Kohlenbach, U. and Oliva, P.: Proof mining: a systematic way of analysing proofs
in Mathematics, in Proceedings of the Steklov Institute of Mathematics, Vol. 242
(2003), 136-164.

15. Nakata, M. and Hayashi, S.: Realizability Interpretation for Limit Computable
Mathematics, Scientiae Mathematicae Japonicae, vol.5 (2001), 421-434.

16. Sommerville, I.: Software engineering, 6th edition, Addison Wesley, 2000.

17. Sanjay, J., Osherson, D., Royer, J.S., and Sharma, A.: Systems That Learn - 2nd
Edition: An Introduction to Learning Theory (Learning, Development, and Concep-
tual Change), The MIT Press, 1999.

18. Toftdal, M.: A Calibration of Ineffective Theorems of Analysis in a Hierarchy of
Semi-Classical Logical Principles, in Proceedings of ICALP ’04, 1188-1200, 2004.

