Mathematics based on Incremental Learning

-Excluded middle and Inductive inference-

Susumu Hayashi

Kobe University, Rokko-dai Nada Kobe 657-8501, Japan

Abstract

Learning theoretic aspects of mathematics and logic have been studied by many
authors. They study how mathematical and logical objects are algorithmically
“learned” (inferred) from finite data. Although they study mathematical objects,
the objective of the studies is learning. In this paper, a mathematics of which foun-
dation itself is learning theoretic will be introduced. It is called Limit-Computable
Mathematics. It was originally introduced as a means for “Proof Animation,” which
is expected to make interactive formal proof development easier. Although the orig-
inal objective was not learning theoretic at all, learning theory is indispensable for
our research. It suggests that logic and learning theory are related in a still unknown
but deep new way.

1 Mathematics based on Learning?

Mathematical or logical concepts seem to be one of the main research targets
of learning theory and its applications. Shapiro [25] investigated how axioms
systems are inductively inferred by ideas of learning theory. We may say that
Shapiro studied how logical systems (axiom systems) are learned. Stephan and
Ventsov [27] investigated how algebraic structures are learned and have given
some interesting learning theoretic characterizations of fundamental algebraic
notions.

We may say that they investigated learnability of the mathematical concepts.
Contrary to them, we are now developing a mathematics whose semantics and
reasoning system are influenced by ideas from computational learning theory.
Let us compare these two lines of research.

Email address: shayashi@kobe-u.ac.jp (Susumu Hayashi).
URL: http://www.shayashi. jp (Susumu Hayashi).
1 This research is partly supported by Kaken-hi grant, JSPS No. 13480084

Preprint submitted to Elsevier Science 19 March 2004

In Shaprio’s work, the concepts of validity and models are the standard ones
from Tarskian semantics, and learning of axiom systems in Horn-logic from
models is investigated. On the other hand, we give semantics of the first order
formulas by means of “learnability”. For example, Jy.A(x,y), which reads as
“there exists y satisfying A(z,y)”, is interpreted as “the value of y satisfying
A(z,y) is learnable from the value of x”.

What does “y is learnable from the value of ” mean? It means that we have
a learning algorithm to produce an answer according to a learning theoretic
framework. There are several different frameworks of learning theory, such as
inductive inference (incremental learning) and PAC-learning. They are further
classified into subframeworks such as BC-learning and EX-learning.

If we fix one of such learning theory frameworks, then we can define a new
“logic”. It may not be a proper logic. We can define a kind of semantics
for it, that is, an interpretation of propositions, but it may not be even closed
under expected logical rules such as modus ponens. In this paper, our learning
theoretic frameworks are restricted to incremental learning, namely, inductive
inference or identification in the limit.

So far, incremental learning is the only good framework for logic. We have
found that subframeworks such as EX-learning and BC-learning have slightly
different meaningful logics. A new learning theoretic framework “Popperian
game” has been found through an investigation of relationship between our
mathematics and reverse mathematics [28].

So far we do not know the whole picture of the links between logic and learn-
ing theory. Many fundamental questions have not been answered. We do not
even know if there are logics corresponding to frameworks beyond incremental
learning such as PAC-learning. Nonetheless, my thesis is that learning theory
and logic are related much more deeply than we now think. In this largely ex-
pository paper, I will explain known relationships between the rules of classical
logic and incremental learning, which are the bases of my conviction.

2 Objectives and backgrounds

The real goal of Limit-Computable Mathematics, abbreviated to LCM, is a
methodology of testing and debugging formal proofs introduced in [16]. T will
briefly explain the background of the research below. A more technically de-
tailed exposition of objectives and backgrounds can be found in [15].

Our mathematics was found through an investigation of interactive formal
proof developments. The area is mainly known by the names of proof check-

ers such as NQTHM, HOL PVS, COQ,.... It may be regarded as a branch
of the broad area of formal methods, which aims to utilize formal languages,
formal semantics, and formal proofs for developments of software and hard-
ware systems. Formal verification, formal specifications, model checking are
all branches of the formal methods, and formal proof development is a basic
technology for the entire area.

In the mid 80’s formal methods community realized importance of validation
of formal specifications. In the formal verification project of the 8-bits Viper
chip for military and other safety-critical uses, it was found that errors in
large scale specifications are much more serious than had been anticipated and
that the ultimate way to detect them must be somehow informal. Ultimate
requirements of systems are in human minds. They are often unclear and even
unstable. Vague informal things cannot be verified in a formal way. Thus,
informal things must be translated into formal things. However, the errors
may be in the translation of informal things into formal things. Thus, informal
and empirical methodologies are important even in formal methods.

I found similar difficulties in formal proof developments in my own project.
Goals and subgoals (lemmas), and definitions of concepts could be formal-
ized in wrong ways. There was no formal way to detect the wrong formaliza-
tions. However, I found that testing formal proofs under development is an
extremely efficient way to detect such errors on translation of informal things
to formal things. The PX proof system [14], which was designed to extract
“certified” functional programs from formal proofs, could extract programs
finely representing computational contents of intuitionistic proofs. By testing
such programs in the usual sense, errors in definitions and lemmas (subgoals)
in the formal proofs were quickly detected. Since the technique is similar to
a formal method technique “specification animation” testing specification on
examples, I called it proof animation, abbreviated to PA.

I proposed to use proof animation to make formal proof developments less
costly in [16]. Since the method was applicable only to intuitionistic proofs,
I had to find a method applicable to classical proofs. Berardi’s semantics [8]
approximating classical proofs by finitely restricted version of the proofs was
a possible candidate. Just by chance, I found that Berardi’s examples are very
similar to Hilbert’s original reasoning of his famous finite basis theorem proved
in the late 19th century (see [15] for details). Akihiro Yamamoto pointed
out to me that both are the same as the limit notions in learning theory.
After Yamamoto’s suggestion, I found that “computation in the limit” or
“limiting recursion” corresponds to restricted forms of classical principles such
as the law of excluded middle applied to an arithmetical formula with a single
quantifier, e.g., X9-formulas, and learning theoretic notions are very useful for
proof animation.

[will refer to these restricted principles as “semi-classical principles”. Logi-
cians including myself tend to think that the limit-recursive functions and
semi-classical principles would not make a good logic. They look so fragmen-
tary. At first, I doubted even its closure under the usual inference rules of
constructive logic. Even S. Feferman, one of the most notable logicians of the
present time, had the same impression.

However, to my surprise, the logic defined by limiting recursion was very natu-
ral, and remarkably wide realms of mathematical proofs were found to use only
these weak classical principles instead of the full power of classical principles.
Thus, it seemed possible to develop most formal proofs only with semi-classical
principles and animate them by computation in the limit. Since it is based on
the limit, I named such a mathematics Limit-Computable Mathematics, LCM.

To built LCM-tools for formal proof developments, there are some theoret-
ical questions to be solved. The standard limit notations are not adequate
to represent limit-structures of proofs, and so a concurrent calculus of limit
processes must be defined and implemented as a kind of programming lan-
guage. It is not known if impredicative reasonings have LCM-interpretations.
Is it possible to extend the proof animation by limit beyond LCM??2 There
are some important and interesting theoretical questions to be solved to build
realistic LCM-environments.

LCM is also interesting as a branch of pure mathematics. It seems related to
recursion theory, to reverse mathematics [28], to game semantics [12] and even
to computation theories over real numbers [21,31]. For example, in this paper,
we will sketch an interesting relationship of a very weak principle of excluded
middle to weak Konig’s Lemma in reverse mathematics and the relationship
is maintained by a sort of learning by erasing wrong hypotheses.

3 Semantics

In this section, we explain LCM by giving its informal semantics A formal
semantics is given in the appendix. The semantics of LCM given below is a
variant of Brouwer-Heyting-Kolmogorov interpretation (BHK interpretation)
of intuitionistic mathematics. In the early 20th century, a famed mathemati-
cian L.E.J. Brouwer attacked usage of the traditional Aristotelian logic in
mathematics. He attacked especially the law of the excluded middle AV —A.
Since he interpreted “A or B” as “there is an algorithm deciding A or B”, the

2 Berardi is extending his limit-semantics [9] to AY-reasonings. His results suggest
that there might be a way to animate proofs by the law of excluded middle applied
to any arithmetical formula.

law was the same to him as saying “all mathematical problems are decidable
by a universal algorithm”. Thus, he rejected it and created a mathematics
which did not employ such principles. He called his mathematics intuitionistic
mathematics and the usual mathematics was called classical mathematics.?

Morphologically, intuitionistic mathematics is a subset of classical mathemat-
ics in which the law of excluded middle and its equivalents are forbidden.
Brouwer had a philosophical reason to reject the law, and to guarantee cor-
rectness of other rules. However, his philosophical principle was rather subjec-
tive, mysterious and unclear for the rational minds of most mathematicians
and logicians.

Later, Heyting and Kolmogorov gave a much clearer and objective interpreta-
tion for Brouwer’s mathematics without Brouwer’s philosophy. The interpre-
tation is now called BHK-interpretation. Although BHK-interpretation was
much clearer, it was still somehow unclear since the undefined notion of “con-
struction” was employed and the semantics was explained in informal lan-
guages. To make it ultimately clear, Kleene replaced “constructions” with
partial recursive functions and gave a translation of a formula into a formula
representing his version of BHK-interpretation. Kleene named it “realizability
interpretation”. Introductory accounts of BHK-interpretation and realizabili-
ties are found in [6,10,30].

Our semantics of LCM given below is obtained from BHK-interpretation by
replacing constructions with limiting recursive functions. It will be called
limit-BHK-interpretation. Since BHK-interpretation is rather informal, there
are many different ways to make it formal. Formal versions can be different
to each other in some essential ways. The informal semantics (limit-BHK-
interpretation) may be regarded as a guideline or a framework such as object
oriented modeling paradigm. Thus, it does not specify the details of the se-
mantics. Details must be given by a formal semantics like realizability interpre-
tations, which correspond to actual object oriented programming languages
such as Java, C++.

Now we give limit-BHK interpretation of mathematics. We will describe what
first order logical formulas of the forms, 3x.A(x), Vz.A(z), AVB, AANB, A = B
mean in limit-BHK interpretation for each case. The crucial cases are AV B
and Jz.A(z). Brouwer regarded correctness of AV B as the ability to decide
which of A and B is correct and to prove the correct one. ”For example, let A
denote the statement “ZF-set theory is consistent” and B denote the statement
“ZF-set theory is inconsistent”. Then the statement AV B holds if we can find
out which statement C' € {A, B} is true and we furthermore give a proof of
the correctness of C. Since consistency of a formal system is a IT)-statement,

3 Intuitionistic mathematics have many variants. Among these variants are con-
structive mathematics and Brouwer’s mathematics [10].

there is no general algorithm to decide it and Godel’s incompleteness theorem
tells us that it is impossible to assert one of them by a reasonable method,
even if we believe in the consistency.

In limit-BHK interpretation, the obligation to “decide” A or B is relaxed to
“learn” A or B. We say AV B is correct in the sense of limit-BHK interpretation
iff we have a computable guessing function g(¢) such that

(1) g(t) converges to 0 or 1,
(2) if lim; g(¢) = 0 then, A is correct in limit-BHK-sense,
(3) if lim; g(¢) = 1 then, B is correct in limit-BHK-sense.

Let g(t) be

0 1 if a proof of a code smaller than ¢ derives a contradiction
g =
0 otherwise

Obviously g satisfies the three conditions above. Thus, the law of the excluded
middle applied to the consistency of ZF-set theory is correct in the sense of
limit-BHK-interpretation.

Remark 1 Assume that g is a guessing function of some function h. How
does this h look like? A quessing function of an n-ary function is n + 1-ary.
Since g is unary, it is a guessing function of a 0-ary function h. That is, h
satisfies h() = x for some x. Although a guessing function of a 0-ary function
seems to be rare in learning theory, it is quite useful in LCM.

Note that we need the law of excluded middle to prove the convergence of g.
Thus, this does not help to decide if the system is consistent or not at all.*
“ZF-set, theory is consistent or not in limit-BHK-interpretation” means that
consistency of ZF-set theory is computable in the limit. Since we cannot com-
pute the limit in Turing’s sense, this does not help to understand consistency
of formal systems anyway.

However, limit-BHK-interpretation gives a systematic way to approrimate a
non-computable truth by a guessing function. The approximation given by a
guessing function helps to understand computational contents of a class of non-
computational or non-constructive proofs. It was the original aim of my proof
animation technique to give a method by which classical proofs in mathematics
are computationally analyzable through actual execution. Although LCM-
proofs cannot be executed in Turing’s sense, they are approximately executable

4 Berardi [8] has given a limit-semantics without this kind of classical reasoning at
meta-level. Since the condition of convergence is replaced with a computationally
weak one in his semantics, it does not give the limit value either.

by guessing functions. And, such approximate executions are adequate for
proof animation as discussed in section 5.

The interpretation of AV B above has a defect. We have to assert A is correct
in limit-BHK-sense, if lim; g(¢) is 0. Just as the guessing function g approx-
imates the truth of the outermost disjunction of A vV B, a guessing function
approximating the truth of A must be given. Technically, it is better to give
such a guessing function for A together with the guessing function ¢ for the
disjunction. The corrected definition of a guessing function of A V B is as
follows:

(1) g(t) is a pair (g1(t), g2(t)) and ¢(t) converges as t — oo,
(2) if lim, g4 (¢) = O then, g is a guessing function of A,
(3) if lim; g1(t) # 0 then, g is a guessing function of B.

Similarly, asserting the existential statement “Jz.A(z)” is interpreted to give
its guessing function g(t) with the following conditions:

(1) g(t) is a pair (g1(t), g2(t)) and g(t) converges as t — oo,
(2) g9 is a guessing function of A(m), where m = lim, g, (¢).

Asserting an existential or disjunctive formula means giving a guessing func-
tion by which we can compute in the limit the information on the existential
quantifier “z of Jx.A(x) and information for A(z)” or on disjunction “the
correct disjunct of AV B and information for the disjunct”. Such a guessing
function will be called a guessing function of the statement. In general, giv-
ing a limit-BHK-interpretation to a formula is defining the conditions of the
guessing functions for the formula. When a guessing function satisfying the
conditions exists, the formula is valid or correct in limit-BHK-interpretation.
Such a formula will be said to be limit-BHK-correct for short.

The conditions on a guessing function g of a conjunctive statement A A B is
given as follows:

(1) g(t) is a pair (g1(t), 92(t)),
(2) g1 is a guessing function of A and g5 is a guessing function of B.

The condition of a guessing function g(z,t) of a universal statement Va.A(x)
is

e g(x,t) converges to a guessing function of A(z) for all .
Similarly the condition of a guessing function ¢(z,t) of A = B is

e if f is a guessing function of A, then g(f,t) converges to a guessing function
of B.

The conditions for the universal quantifier and the implication are somehow
problematic, since limits of guessing functions are again guessing functions.
There are two major different approaches on functions incidentally correspond-
ing to the approaches to functions in EX-learnability and BC-learnability.

In his original interpretation, Kleene treated functions as “programs” or “in-

dices” as EX-learnability. This approach is called intensional. Kreisel’s modi-
fied realizability interpretation can treat functions as their extensions as in the
usual set theoretical mathematics, i.e., two functions are equal iff their graphs
are equal. This approach is called extensional and apparently corresponds to
BC-learnability by Case and Smith. Kleene-style intensional interpretation is
given in the appendix. A realizability using extensional approach is possible
by the construction in [2]

Finally, we give interpretation of non-logical formulas such as equations and L.
A non-logical atomic formula F' is considered limit-BHK-correct iff it is correct
in the ordinary sense. Since asserting a statement means giving a guessing
function, we have to define guessing functions for F'. Since guessing functions
are meaningless for this case, we may take any guessing function converging
as far as F' is correct in the sense of Tarski semantics. The condition on a
guessing function ¢(t) of an atomic non-logical formula F' is

e ¢(t) converges and F' holds.

The convergence condition is not very important. We may drop it.

Note that an interpretation of negation —A has not been given. It is understood
to be an abbreviation of A = 1, and its semantics is given by this formula.
1 is the atomic formula representing a contradiction such as 0 = 1. By the
definition for atomic formulas, there is no guessing function of the formula
1, which never holds. If A and A = L both have guessing functions, then it
yields a contradiction. Thus if A = 1 has a guessing function, A does not. If
A does not have any guessing function, then any function ¢(t) is a guessing
function A = 1 since the condition becomes vacuously true. Namely, A = |
is limit-BHK-correct iff A cannot have any guessing function.

It would be worth noting that if guessing functions g(x,t) are all trivial,
i.e. g(x,t) = g(x,0), then limit-BHK-interpretation becomes the usual BHK-
interpretation of intuitionistic mathematics.

4 Semi-classical principles

In this section, semi-classical principles of LCM are introduced. Detailed ex-
positions on them including prenex normal form theorem and a provabil-
ity hierarchy can be found in [1]. A TI°-formula is a formula of the form
V3T - - - Qr,. A, where A is a formula for a recursive relation. X2 -formula is
defined similarly.

e YV_LEM is AV —A for any X2-formula A. LEM stands for Law of Excluded
Middle.

e II°-LEM is defined similarly.

e YV_DNE is == A = A for any 2°-formula A. DNE stands for Double Nega-
tion Elimination.

By the same argument for the consistency of ZF-set theory, II%-LEM Vz.A(z)V
—Vz.A(z) is limit-BHK-correct. Since x is recursively computable when Jz. A(x)
holds, X0-LEM 3z.A(z) V —3x.A(x) is also limit-BHK-correct. Take T'(e, e, x)
as A(zr), where T is Kleene’s T-predicate. Then giving a realizer for II9-LEM
or YY-LEM means giving a function answering to Turing’s halting problem.

Next we consider X)-DNE. Assume ——3z.Vy.P(x,y) is limit-BHK-correct for
a recursive predicate P. Then Jz.Vy.P(x,y) holds classically and we can define
a guessing function g converging to such an x as follows:

mo(h(n)), mi(h(n)) + 1) if P(mo(h(n)), mi(h(n)))
mo(h(n)) +1,0) if =P (mo(h(n)), 71 (h(n)))

7o and 7 are projection functions for pairs, i.e., mo((z,y)) = z and 7 ((x,y)) =
y. The function h tries to traverse the depth two trees defined by the branches

{{z,9) |P(2,y)}.

Since a trivial guessing function of Vy.P(x, y) is given if Vy. P(x, y) is classically
true, it is easy to define a guessing function k(¢) for Jz.Vy.P(x,y). Thus,
Y9-DNE is limit-BHK-correct with the guessing function [(x,t) defined by
l(z,t) = k(t).

5 Learning in the limit and proof animation

In this section, I will explain why “learning” in the limit would be useful for
proof animation. The contents of this section largely depends on clarifications
and suggestions by one of reviewers of the paper.

The semantics described above is based on the notion of “computation in the
limit” appeared in [26]. Computation in the limit means that functions are
“computable” relative to the halting problem K as an oracle. Such functions
are also simply called K-recursive. In this respect, the semantics described in
the previous sections can be understood in the context of recursion theory.

On the other hand, Gold’s model of learning in the limit concerns a limiting
process of another type: the learner sees more and more information on an
object X and then has to come up with finite information answering the
question under investigation. The finite information is a program for X in
case of function learning, an enumeration procedure for a set X in the case
of learning r.e. languages, an index of a class in the case of classifying some
sequences according to a finite or infinite number of classes.

Although it is possible to interpret our realizability interpretation in pure
recursion theoretic framework, it is better to relate it to learning theory and so
doing is much more suggestive and productive. A typical example which relates
learning theory to LCM is the minimum number principle (MNP) “there is
an m such that for all n, f(m) < f(n) holds”, where f is a function from the
natural numbers to the natural numbers. It is formalized as follows:

Im.n.f(m) < f(n).

The function f may be regarded as a recursive function, and then the real-
izability interpretation of this principle maintains that m is obtained by a
K-recursive function. But, it is much better to regard f as an input stream in
the sense of programming language. An input stream f(0), f(1), ... is a possi-
bly infinite series of data supplied by the environment which is uncontrollable
and unpredictable. A series of characters input from keyboard is a typical
input stream. Then, no one can predict the next value of the input stream.
Nonetheless, we can “find” the value m attaining the minimum of f(m) by
learning in the limit process. We write down zero on a blackboard. When,
the next value f(1) comes in from the stream, we compare f(0) on the board
with f(1). If f(1) > f(0) holds, then we do nothing. If f(0) < f(1) holds,
then we erase 0 on the board and write 1. We continue the same process
infinitely. Eventually, the number m on the board attains the minimum of
the value of the f(m) and stop to change. This is a learning process in the
sense of algorithmic learning theory. Actually, this problem of finding m is
the same as the classification problem of functions with respect to the classes

10

Cy ={fly =min{f(z)|lz =0,1,...}.

More important yet, learning in the limit is better than K-recursiveness in
modelizing the debugging process as Shaprio [25] used learning theory for
his algorithmic debugging. Program debugging process is interactive and the
input stream f can be considered as ever expanding set of test cases in the
sense of xUnit testing framework in [5]. EX-learning is easily modelized by
limiting realization of the formula Je.Vz.f(x) = p.(x), where @, stands for the
recursive function of the index e, and the stream f(0), f(1),. .., or equivalently,
the set {(z, f(x))|xr = 0,1,...} could be regarded as the complete test suite
for the program ¢, which implements f.°

Proof animation is a technology for debugging proofs. Since a proof is not a
function or a set, there is no complete test suite for a proof. Nonetheless, as
the MNP could be interpreted by a learning process, debugging of proofs is
naturally modelized by learning process via our realizability interpretation. To
show how proof animation by learning in the limit is adequate for debugging
of proofs, we illustrate an imaginary session of proof animation in the below.

Assume that I was developing a formal proof of a sort of MNP. I define a
metric on the interval [m, n] of the set of integers by the distance from n. For
example, the metric of n is 0 and the metric of m is |n —m/|. I introduce a
linear order by means of the metric. Thus, n is the smallest element and n —7
is larger than n — 3, since their metrics are 7 and 3, respectively.

What I wish to prove is MNP for this ordering:

3.y P (f(2), £ (), (1)

where f is a function from the natural numbers to the interval and P, ,,(x,)
represent “x is less than or equals to y in the ordering”.

The metric of z is formally defined by |x — n|. Thus, the formal definition
of Pp,n(x,y) should be |y —n| > |z — n|. My proof language has the built-in
predicate >, but does not have a built-in for <. So I have to use >-sign. Before
starting to type in the formal definition, I felt tired and went to the common
room to have a cup of tea. When I returned to the office, I began to type in
the formal definition of P, ,(z,y) as |x —n| > |y —n|.

I develop some lemmas and my very clever proof checker automatically chose

® A test suite is a group of test cases, by which we often “specify” a small unit of
functionality of the program to be built. See [5] for details. It would be worth to
note that TDD methodology in [5] can be considered as a practical version of pro-
gramming by examples, which is an application of learning theory to programming.
See [18] for detailed discussions.

11

an appropriate mathematical induction and proves the principle (1) from the
lemmas. Since the proof checker proved it, we are very sure about the correct-
ness of the principle.

It might be better to animate the proof to see what kind of limiting compu-
tation process presents in the proof. f may be programmed, but it is easier to
input the values of f interactively from the keyboard. Set m = —2 and n = 7.
We input as f(0) = 3.

The tool returns the first guess “x would be 0 and the value f(z) is 3”. It’s
ok. I have given only one date-item to the animator. Thus, it should be the
guess.

Next, I will input f(1) = 7 to see the mind change. Since 7 is the least element,
a mind change must happen. I type in.... The proof animator replies “I do not
change mind.” Alas! What happened? Maybe a serious bug in the animator.
[got crazy and type in “f(2)=2". The animator replies “I changed my mind.
x would be 2 and the value f(z) is 2”.

The mind changes are just opposite to the expected. I suspect my definitions
and find P, (7, y) was defined |x —n| > |y — n| instead of [y —n| > |x —n|.

But, why the proof checker proved the wrong proposition? No, it did not prove
wrong proposition. The two orders of x and y defined by |x —n| > |y — n| and
ly —n| > |x — n| are symmetrically isomorphic. The proof checker proved the
correct proposition. Only one thing was wrong. The defined order was not the
intended one.

Since the proof checker cannot know the intention in my mind, it could not
detect the slip. Only when I interacted with the proof consulting my intention,
I could find the gap between the formal definition and the intention.

Note that the interaction was possible since we use limiting realizability, since
the principle is essentially non-constructively and so the constructive proof
animation in [16] is not applicable. Furthermore, learning in the limit naturally
modelized the interaction sequence between user and animator.

6 Mind change hierarchy of propositions

In the realizations of semi-classical principles given in section 3, realizers for
Y- and IIY-LEM are apparently simpler than the realizers for A)-DNE. The
first guess of the realizer given for IT{-LEM (X{-LEM) is fixed to the V side (—=3-
side) and a mind change happens if a counterexample is found. For example,
the guessing function of the realizer for X-LEM is defined by ¢(t) = 0 if

12

Jdr < t.A(x) and g(t) = 1 if Vo < t.=A(z). Thus realizers of II-LEM belong
to I17 " class of Ershov’s boolean hierarchy [13]. On the other hand, the realizers
for £9-DNE need the full Ershov hierarchy. In this sense, AS-DNE is stronger
than X9- and IT1%-LEM, and X9- and TI9-LEM have the same strength.

Some mathematical propositions have intermediate strengths. For example,
the natural realizer of MNP 3m.Vn.f(m) < f(n) does at most f(0)-time mind
changes. (We guess m = 0. If we find a smaller f(i) then we change mind
to m = i and repeat the process.) These examples show that the formulas
realizable by recursive guessing functions may be classified finely by Ershov’s
mind change hierarchy or something like that. We have not known what kind
of mind change hierarchy is appropriate for classifying LCM-valid formulas
and their realizers. One of the reviewers has suggested Parsimony Hierarchy
by Ambainis, Case et al. [3] might provide a more direct classification than
Ershov hierarchy.

Even if we use Ershov’s idea, our hierarchy may differ. Our guessing func-
tions are not always converging for all natural numbers.® This might make
difference from the original Ershov hierarchy, since limiting partial functions
of partial recursive functions may be beyond AY (see Yamazaki’s example in

[21]).

7 A hierarchy by formal provability

In section 6, we considered the strengths of semi-classical principles via in-
terpretations (semantical hierarchy). There is another kind of hierarchy via
derivability (syntactical hierarchy). Hierarchy via derivability is the one used
in proof theoretic studies such as reverse mathematics. Some base systems
are fixed and logical principles are compared with their strength via these sys-
tems. Proof checkers are formal systems implemented on computers. Thus this
kind of research is quite important for proof animation. It would show which
kind of theorems can be animated by PA /LCM-technology, and which kind of
semi-classical principles are appropriate to animate a particular theorem.

We call it calibration of classical principles. The basis of the calibration theory
is the syntactical hierarchy of semi-classical principles. The hierarchy of arith-
metical semi-classical principles have been determined in [1]. The next step
is to classify classical theorems with respect to this hierarchy. Some results
have been already known. MNP and YX-LEM are provably equivalent in the

6 Every limit of partial functions can be extended to the limit of a total function.
However, the limit obtained might not be total by itself. Thus, we cannot replace
partial functions with total functions.

13

standard formal system of first order intuitionistic arithmetic augmented with
a free function variable. A formulation of existence of step functions such as
y = [x] over real numbers is equivalent to X3-LEM. Toftdal [29] has given
some elaborated calibration results in analysis and Berardi [7] has given some
calibration results for £9-LEM or stronger. Etc. etc..

The standard intuitionistic formal systems are too weak to derive L-LEM
from TI%-LEM by the lack of ability to prove L9-DNE (Markov’s principle).
YY-DNE is realized even by the original Kleene realizability. Thus some in-
tuitionistic systems contain it. However, most systems do not contain it. For
example, standard logic of constructive proof checkers as COQ does not in-
clude it. Similarly, A3-DNE is not derivable from $¢-LEM. Thus, this hierar-
chy is not the same as expected in the standard recursion theory. There is a
weaker but still natural form of existence statement of Gauss function which
is equivalent to II)-LEM but not to X9-LEM. Since the difference actually
affects mathematical theory to be formalized, the syntactical hierarchy should
be analyzed.

In the syntactical hierarchy, MNP and XY-LEM are equivalent, since MNP
is derivable from Y9-LEM by mathematical induction [15]. Mathematical in-
duction enables to use L)-LEM repeatedly. For example, w? mind changes
in Ershov’s sense is easily attainable by double induction, which is derived
from the ordinary mathematical induction. Then a natural question arises. Is
it possible to make the syntactical hierarchy finer according to mind change
hierarchy? Linear logic is sensitive to the number of applications of axioms or
assumptions. A finer interpretation we should seek may be an interpretation
of linear logic or something like that. A fine hierarchy might be obtained by
restricting induction principle as reverse mathematics [28].

8 Weak Konig Lemma, LLPO and Popperian game

In the syntactic hierarchy of LCM principles, Weak Konig Lemma, abbreviated
to WKL, is especially interesting. WKL is a theorem for binary tree:

e Any binary-branching tree with infinite many nodes has an infinite path.

Harvey Friedman found that this principle is logically as weak as Hilbert’s
finite standpoint in a certain logical environment but proves many important
mathematical theorems such as the completeness theorem of first order pred-
icate logic. On this unexpected finding, Simpson and his colleagues developed
an interesting theory of “reverse mathematics” [28]. They calibrated mathe-
matical theorems by means of WKL or the like. For example, they calibrate
which theorem is proved by WKL and WKL is necessary to prove it.

14

After the low basis theorem and results of reverse mathematics, Ishihara and
Kohlenbach pointed out that WKL would be important in LCM as well. They
and Berardi, Yamazaki and Hayashi jointly found some interesting relation-
ships between WKL and Lesser Limited Principles of Omniscience (LLPO),
a principle in constructive mathematics, and the position of WKL in LCM
hierarchy.

The syntactical hierarchy of LCM including WKL was very similar to the one
of reverse mathematics. Although our hierarchy is finer than the one of reverse
mathematics, many techniques developed in reverse mathematics were quite
useful to investigate our syntactical hierarchy.”

After the works, I raised an open problem to find a learning theoretic frame-
work that corresponds to this weak classical principle in the proceedings ver-
sion of the present paper [17]. An unexpected solution was found very soon
after sending the manuscript to the editor. It turned out that a series of realiz-
ability interpretations coined by Lifschitz [20] and extended by van Oosten [23]
is the right framework to represent logical aspect of WKL. Although Lifschitz
and van Oosten were unaware of learning theoretic aspects of their works, it is
straightforward to give a learning theoretic framework corresponding to their
interpretation.

The underlying idea of our learning theoretic framework resembles the philoso-
pher Karl Popper’s “falsifiability” or “refutability”, e.g., [24]. Popper claimed
that a theory is scientific only when it is clearly refuatble by a counterexample.
A theory refuted by a counterexample drops and the other theories survive.
By such selection with refutation, science evolves and converges to the truth.

We formulate Popper’s idea in an algorithmic way. We assume that some
theories are competing in a game to predict the value of a given scientific
constant. We restrict ourselves algorithmically. It means that realistic things
must be computable relative to observations. The observations can be modeled
as an oracle. We consider only functions and reals etc. recursive relative to the
oracle.

Thus a scientific constant is a recursive real number relative to the oracle. Each
theory has its hypotheses by which the constant value is logically predicted.
We assume that every theory is algorithmically scientific in Popperian sense,
namely, every hypothesis is T1%-sentence, which is the only formulas refutable
algorithmically. Since a theory has only finitely many hypotheses, we regard
a theory as the conjunction of these IT-sentences. Thus a theory itself is a
[1%-sentence. By formalizing the situation, we have a framework which I call

" The axiom of ACA, of reverse mathematics represents the entire arithmetical
hierarchy, i.e. the union of 0™ for all n. On the other hand, M2-LEM represents
only 0(™).

15

Popperian game.

A Popperian game is a finite set of players {(ay, Pi(x1)), ..., (an, Pu(z,))}-
Each player is modeled by a pair of predicted value a; and its background
theory P;(z;). A theory P;(z;) is a predicate recursive relative to the oracle,
which is interpreted as the TI¢-proposition Vz;.P;(z;).

If P; is refuted by a counterexample u such that P;(u) is false, then the player
(a;, P;) looses and drops from the game. It is possible that more than one
player win. Even none may win, since the game is continued even when only
one player remains. Even if all other theories are refuted and only one theory
remains, the theory remained may be incorrect.

The set of winners of a Popperian game S = {(a1, Pi(z1)), ..., (an, Pa(z,))}
is defined by {(a;, P;(x;))|Vz;.P;(x;) holds} and is denoted as Win(S). The set
of winning values is defined by {a;|(a;, P;(x;)) € Win(S)} and is denoted by
WV(S).

A system of multivalued functions is defined by means of Popperian game
after Lifschitz realizability [20]. A multivalued function over natural numbers
is a function from the set of natural numbers to the set of finite sets of natural
numbers. A multivalued function f is PG-computable or Popperian game-
computable, if there is a function g recursive relative to the oracle such that
g(x) is a code of a Popperian game {(af, P{(z1)), ..., (a}, P¥(x,))} defined
for x and f(x) = WV(g(x)) holds.

Lifschitz and van Oosten realizability interpretations can be reconstructed
as realizability interpretations by PG-computable multivalued (partial) func-
tions. 8

The logical (or set theoretical) principle embodying the notion of Popperian
game (or PG-computability) is WKL in the following form:

Vf.(T is an infinite binary tree recursive in f = Jg.(g is an infinite path of 7))

This scheme is realizable by realizability interpretations with PG-computable
functions.

The important point is that we can apply the same principle again to trees
constructed recursively in the path g just as in the usual logic. This is the
difference from the other LCM principles such as II)-LEM, which cannot be
applied repeatedly.

8 Note that the oracle is not essential for their original cases. The only reason for
using the oracle is to make the Popperian game more natural from the viewpoints
of learning theory and discovery science.

16

LCM-WKL is intuitionistically equivalent to “II%-LLPO+II-b-ACq,”, where
[19-LLPO is

Va.=(3y. Al (z,y) A 3y.BY (z,y)) = Vy—AL (2,y) V Vy.—~B (z,y)

and T19-b-ACy is a very weak axiom of choice

Va.(Vy. Al (z,y) VVy.BY (,y)) =
dg.Va.(g(z) = 0 = Vy. Al (z,9)) A (9(z) = 1 = Vy. Bl (z,9))]

In these schemes, A/ and B/ are predicates recursive in f.

[19-LLPO is an LCM version of an intuitionistic principle “Lesser Limited
Principles of Omniscience” [10]. LLPO may be regarded as a very weak law of
excluded middle. TI¢-LEM implies it. IT19-b-ACjy is also derivable from I19-LEM
with a help of very weak function principle.

These ultra weak laws of excluded middle are yet adequate to prove many
important theorems constructively, e.g., the completeness theorem of predi-
cate logic. This fact remarkably resembles reverse mathematics [28]. Actually,
proofs of corresponding results in reverse mathematics go through in LCM
without almost any changes.

A classical formal system WKL, of Weak Konig Lemma in reverse mathemat-
ics has a countable model which has only countably many sets coded by a
low set.® Another realizability interpretation which realizes these weak LCM
principles can be obtained by the standard Kleene realizability interpretation
by means of partial functions recursive in the countable model.

9 A game semantics

One of the origins of LCM was Berardi’s approximation interpretation of clas-
sical logic [8]. Berardi’s interpretation was motivated by Coquand’s game se-
mantics for classical logic [12]. Thus, it is natural that there are some rela-
tionships between Coquand’s game semantics and LCM semantics. One of the
reviewers of the present paper, who is perhaps unaware of Coquand’s game
semantics, outlined a game semantics with mind changes and asked me if the
semantics or alike is equivalent to LCM for the prenex normal forms. The
mind change rule and convergence criteria that the reviewer gave were not
clear. Thus, we understood it as Coquand’s semantics.

9 A set is low, if the jump of its degree is equal to the degree 0'.

17

Coquand’s semantics is fully classical and is thus beyond LCM. However, it
turned out that Coquand’s game semantics coincides with LCM realizability
interpretation, when its mind change rule (backtracking rule) is restricted to
a simpler rule. The game with the simpler rule was practically identical to the
one considered and called simple backtracking in a preliminary version of [12].

The restricted rule is more natural than the one given in [12] from the game
theoretic point of view. It is likely that this game semantics is a key to better
understanding of LCM semantics, and it would give a better proof animation
methodology. Here, I briefly report the semantics as an answer to the reviewer.
This is a joint work with Thierry Coquand and Stefano Berardi, and we are
still working on its details.

In game semantics, e.g., [12], only positive formulas are considered. A for-
mula is positive iff it is built up from atomic formulas for recursive predicates
with only V, 94, V and A. In the standard game semantics of logic, formulas
are infinitary propositional formulas with infinite or finite disjunctions and
conjunctions as connectives. It is easy to map positive formulas of first order
arithmetic to such infinitary propositional formulas. Since LCM semantics is
not defined for such infinitary formulas, we consider only positive formulas of
arithmetic. Furthermore, positive formulas are constructively transformed to
prenex formulas. For example, consider a generic instance of ¥9-LEM

Jx.Vy.T(e,x,y) VVa.Ib.T (e, a,b), (2)

where T is the Kleene’s T-predicate and T~ is an atomic formula represent-
ing the negation of 7. This is equivalent in HA (Heyting Arithmetic; The
first order formal system of intuitionistic arithmetic) to the following prenex
formula:

Jr.Va.F0.Vy.((x > OANT(e,z — 1,y)) V(. =0A T (e,a,b)). (3)
It is easy to transform any positive formula to a prenex normal form in a
similar way. We consider only prenex formulas below.
We briefly explain Coquand’s game semantics with deep mind changes (back-
tracking) developed in [12]. A game on a prenex formula is played by two
players Eloise and Abelard. We illustrate the game by an example
Az, Vy1. 322 Vyo. 21 + y1 < 2o + ¥o.

Eloise is supposed to give a witness for existential quantifier, dxy and dz,.
Abelard is supposed to give a witness for universal quantifier, Vy; and Vys.

18

Since the outermost quantifier is dz;, Eloise moves first, e.g., by taking z; = 7.
Then, Abelard moves, e.g., by y; = 11. Then, for example, Eloise moves with
o = 18 and Abelard moves with y, = 4. Now, it’s Eloise’s turn. But, there is
no quantifier anymore, thus, they start to evaluate which side wins by looking
at the innermost atomic formula. Now, it is 7411 < 18 4+ 4. Since this is true,
Eloise wins. If she had played x5 = 17, Abelard could play y» = 0 to make
the formula false 74+ 11 < 17 4+ 0. Then, Eloise loses and Abelard wins. Note
that Eloise has a winning strategy taking zo = x; + y;. We suppose that all
moves executed are recorded and the both players can review them anytime.
This is the standard notion of games associated to prenex formulas. It is easy
to see that Eloise has a recursive winning strategy iff the formula of the game
is recursively realizable in Kleene’s sense.

Coquand extended this notion of game to classical logic. In Coquand seman-
tics, Abelard plays just as in the game described above, but Eloise is allowed
to change mind. She is allowed to go back to any point in the game so far
played. We may assume that all the moves are recorded on a piece of paper
in the chronological order. Eloise may change her mind on her turn. She may
flush the current status of the play and reset it to a past status of the play.
For example, suppose that she mistakenly moved as x5, = 1 in the above play
and Abelard moved as y, = 0 and won. When she noticed her loss, she may
backtrack to the position of her move for x5 and say z = 18. Then she can
win. This backtrack is also recorded on the paper.

It is known that a prenex formula is classically valid iff it has a recursive
strategy in the games with backtracking. I describe a winning strategy for
Y9-LEM (3) given above.

Below, Abelard will be denoted by V and Eloise will be denoted by 3. A round
in which 4 moves with x = 11 and V moves with ¢ = 8 will be denoted
by [z = 11;a = 8]. A status of a play is a finite sequence of rounds and
will be denoted as “[x = 0;a = 3|,[b = 8;y = 11]”. For example, the first
example of play which led to 3’s win “7+4 11 < 18 +4” is denoted by a status
“lty = Tyyp = 11], [z = 18;y9 = 4].” Note that status of the play was called
“occurrence” in [12]. A play with backtracking consists of finite sequence of
status ug, uy, Us, ... starting with empty status. wu,; is obtained from one of
u; (1 < n) by adding a round.

I will give an example session of Eloise’s recursive winning strategy for (3):

up: 7. The initial empty status consisting of zero rounds.

uy: “[z = 0;a = A;]”. The first round. A; is a number played by V.

ug: ‘[z = Ay 4+ 1;a = Ay]”. 3 backtracks to uy and replay with x = A; + 1
and asks V the next move. He moves with a = As.

ug: “lz = Ay 4+ 1;a = Ayl [b = 1;y = A3]”. A new round is added after us.

19

3’s move b = 1 is a dummy. After this, we have two cases. If T'(e, Ay, A3) is
true, then 4 wins and d stops the play. If it’s false, 4 backtracks to u; and
continues to play as follows:

ug: “lz = 0;a = Ay],[b = As;y = A4]”. Then, 3 wins with T~ (e, Ay, A3) for
any Ay, since T'(e, Ay, As3) is false.

A winning strategy for 3 is modeled by a function ¢(“uy,...,u,”) which gives
the next d’s move, namely one of the following:

(1) &(“ug,ur,us”) is a number, e.g, 1 of b = 1 in uz: “[x = A; + 1;a =
Ao, [b=1;y = A3]” above. No backtracking, in this case.

(ii) &(“ug,uq,usz,u3”) is a pair of a backtracking point and a number, e.g.,
(u1, Ag) for ug: “[x = 0;a = Ay],[b = As;y = A4]” above. First, the
current status is set to u;: “[z = 0;a = A;]” and Eloise moves with
b = As. A backtracking takes place, in this case.

See [12] for details.

As we have seen, Coquand’s game validates more than LCM. The formula
(3) is not realizable by limiting functions, since AJ-function cannot decide the
universal X9-formula 32.Vy.T (e, z, y). Thus, the game semantics with the full
backtracks does not characterize LCM semantics. However, when backtracks
are restricted to simple backtracks, the game semantics coincides with LCM
semantics.

Recall that a play with backtracking was a finite sequence of status ug, u, us, ...
where the condition

U1 is obtained from one of u; (i < n) by adding a round
is met. We restrict the backtrack points to the substatus of u,, i.e.,

Un11 is obtained from one of u; (i < n) by adding a round, and such a u;
must be a substatus of w,,.

Status 5] is a substatus of status Sy iff S; is a segment of S5. Namely, S; is
obtained from S, by “popping up” some rounds from the tail. Thus, a more
natural equivalent definition is

A play with simple backtracking consists of a finite sequence of statuses
ug, U1, Usg, ... starting with the empty status. u,; is obtained from a sub-
status of u, by adding a round.

The original game in [12] has a quite complicated form of backtracking: if

we think of the game as a debate, Eloise can not only change her mind, but
also resume a previous position in the discussion that she had given up for a

20

while. This complicated behavior is precisely what is forbidden in the simple
backtracking.

A game consisting of plays with simple backtracks is called a simple game.
Observe that the strategy for (3) backtracks from the status ug “[x = A; +
L;a = Ay, [b=1;y = As]” to the status u; “[z = 0;a = A4]”, which is not a
substatus of us. It is a deep backtracking not allowed in simple games.

Actually, we can prove for any prenex normal formula that there is a recursive
winning strategy of simple game for 3 iff the formula is realizable by the
LCM-realizability interpretation, which is given in the appendix.

10 Conclusion

Researches of LCM has begun recently. There are still plenty of problems to be
solved. LCM is a mathematics of approximation in a very wide sense including
identification in the limit. In practical mathematics, some kinds of approxima-
tions are inevitable. We are trying to relate LCM to practical mathematics like
numerical analysis and computer algebra. Theories and techniques developed
in learning theory must be very useful and indispensable in these researches.

Investigations of links between learning theory, reverse mathematics and LCM
must be fruitful to understand the relationship between learning theory and
LCM. There are some interesting resemblances between these three. It has
been shown that the ideals of the polynomial ring over the rationals in n
variables is EX-learnable with mind change bound w” but not less than w™ [27].
In reverse mathematics, Hilbert finite basis theorem for the same polynomial
rings for all n is equivalent to transfinite induction up to w* [28]. In LCM,
the same theorem is proved by n-fold induction and X%-LEM, which lead to
w™ mind change in Ershov’s sense. Are there any formal relationships between
these areas by which these resemblances are clearly explained?

Another challenging problem is to find logics corresponding to the other
paradigms of learning theory such as PAC-learning. PAC-learning does not
straightforwardly correspond to the standard logic. A logic of PAC-learning
will be a kind of probabilistic logic.

It is known that Logic of discovery [4] by Bardzins, Freivalds, and Smith re-
sembles LCM at the lower level of hierarchy. Are there any deeper relationships
between them?

21

11 Acknowledgments

I thank John Case and Carl Smith for discussions on the notion of learning
and/or discovery. The title of the paper was changed from the proceedings
version [17] after Case’s suggestion. I thank to Thierry Coquand and Stefano
Berardi for quite helpful discussions on game semantics. The results presented
in section 9 are obtained through a joint work with them. I thank the reviewers
for many helpful suggestions. I am especially grateful to one of the reviewers
whose suggestion led us to the game theoretic characterization of LCM.

References

[1] Akama, Y., Beradi, S., Hayashi, S. and Kohlenbach, U.: An arithmetical
hierarchy of the law of excluded middle and related principles, submitted, 2004.

[2] Akama, Y. and Hayashi, S.: Limiting Cartesian Closed Categories, submitted,
2002.

[3] Ambainis, A., Case, J., Jain, S. and Suraj, M.: Parsimony Hierarchies For
Inductive Inference, manuscripts, 2003.

[4] Bardzins, J., Freivalds, R., Smith, C. H.: A Logic of Discovery, Discovery Science
1998: 401-402

[5] Beck, K.: Test-Driven Development: By Example, Addison-Wesley (2002)
[6] Beeson, M.: Foundations of Constructive Mathematics, Springer, 1985

[7] Berardi, S.: Some Intuitionistic Equivalent of Classical Principles for Degree 2
formulas, manuscripts, 2004.

[8] Baratella, S. and Berardi, S.: Constructivization via Approximations and
Examples, Theories of Types and Proofs, M. Takahashi, M. Okada and M. Dezani-
Ciancaglini eds., MSJ Memories 2 (1998) 177-205

[9] Berardi, S.: Classical logic as Limit Completion, -a constructive model for non-
recursive maps-, submitted, 2001, available at
http://www.di.unito.it/"stefano/

[10] Bridges, D. and Richman, F.: Varieties of Constructive Mathematics, 1987,
Cambridge University Press.

[11] Case, J. and Suraj, M.: Inductive Inference of X9- vs. X9-Definitions of
Computable Functions, manuscript, 2002.

[12] Coquand, T.: A Semantics of Evidence for Classical Arithmetic, Journal of
Symbolic Logic, 60(1), 325-337, 1995.

22

[13] Ershov, Y.: A hierarchy of sets I, II, III, Alg. Log. 7 (1968) 47-74, transl. 7,
(1968) 25-43,Alg. Log. 7 (1968) 15-47, transl. 7, (1968) 212-232, Alg. Log. 9
(1970) 34-51, transl. 9, (1970) 20-31.

[14] Hayashi, S. and Nakano, H.: PX: A Computational Logic, 1988, The MIT Press,
PDF version is available at http://www.shayashi. jp/PXbook.html

[15] Hayashi, S. and Nakata, M.: Towards Limit Computable Mathematics, in Types
for Proofs and Programs, P. Challanghan, Z. Luo, J. McKinna, R. Pollack, eds.,
LNCS 2277 (2001) 125-144

[16] Hayashi, S., Sumitomo, R. and Shii, K.: Towards Animation of Proofs - Testing
Proofs by Examples -, Theoretical Computer Science, 272 (2002), 177-195

[17] Hayashi, S.: Mathematics based on Learning, in Algorithmic Learning Theory,
Proceedings of the 13th International Conference, ALT 2002, Springer LNAT 2533,
272 (2002), 7-21

[18] Hayashi, S., Pan, Y., Sato, M., Mori, K. and Sul S., Haruna, S.: Test Driven
Development of UML Models with SMART modeling system, submitted, 2004.

[19] Kohlenbach, U.: Proof Interpretations and the Computational Contents of
Proofs (draft in progress), BRICS, University of Aarhus, available at
http://www.brics.dk/“kohlenb/

[20] Lifschitz, V.: CTy is stronger than CTy!, Proceedings of the American
Mathematical Society, vol.73 (1979), 101-106.

[21] Nakata, M. and Hayashi, S.: Realizability Interpretation for Limit Computable
Mathematics, Scientiae Mathematicae Japonicae, vol.5 (2001), 421-434.

[22] Odifreddi, P. G.: Classical Recursion Theory North-Holland, 1989

[23] van Oosten, J.: Lifschitz’ realizability, The Journal of Symbolic Logic, vol. 55
(1990), pp.805-821

[24] Popper, K.: The Logic of Scientific Discovery, Routledge Classics, Routledge,
London and New York, 2002.

[25] Shapiro, E.Y.: Inductive Inference of Theories from Facts, in Computational
Logic: Essays in Honor of Alan Robinson, Lassez, J.L. and Plotkin, G.D. eds.,
MIT Press, 199-255, 1991

[26] On degrees of unsolvability, Annals of Mathematics, vol. 69 (1959), 644-653.

[27] Stephan, F. and Ventsov, Y.: Learning Algebraic Structures from Text using
Semantical Knowledge, in Theoretical Computer Science - Series A, 268:221-
273, 2001, Extended Abstract in Proceedings of the Ninth Annual Workshop on
Algorithmic Learning Theory - ALT 1998, Springer LNCS 1501, 321-335, 1998.

[28] Simpson, S. G.: Subsystems of Second Order Arithmetic, Springer, 1999

[29] M. Toftdal: A Calibration of Ineffective Theorems of Analysis in a Hierarchy of
Semi-Classical Logical Principles, submitted, 2004.

23

[30] Troelstra, A.: Realizability, in Handbook of Proof Theory, S. Buss (ed.),
Elsevier, Amsterdam, 1998, 407-474

[31] Yasugi, M., Brattka, V. and Washihara, M.: Computability aspects of some
discontinuous functions, 2001, Scientiae Mathematicae Japonicae, vol.5 (2001),
405-419.

A Realizabilities

In this appendix, a Kleene style realizability for first order LCM and a modified
realizability for LCM are given. A realizability similar to the Kleene style
realizability has been given in [21]. The one given here is designed in a little
bit more learning theoretic way and closer to Berardi’s limit-semantic [9].

It should be noted that if guessing functions g(z,t) are all trivial, i.e. g(z,t) =
g(x,0), then the realizabilities given below turn to realizability of intuitionistic
logic. Then realizers are computable (partial) functions.

A.1 Kleene style limit-realizability

We give a Kleene style limit-realizability interpretation. In this approach, we
regard guessing functions as their indices. Thus we assume ¢ an acceptable pro-
gramming system or an acceptable system of indices of partial recursive func-
tions (see [22]). We assume a standard coding of finite sequences of numbers
and write, e.g., (ai, ..., a,) for the code of the sequences ay, ..., a,. A pair is re-
garded as a sequence with two elements. 7; is a computable function retrieving
i-th element of sequence as a code. An index of n-ary function f(xq,...,x,) is
regarded as an index of 1-ary function f’ such as f'((x1, ..., z,)) = f(21, ..., Tp)-
We fix an algorithm to compute p from ¢, r so that ¢,(z) = (¢,(x), ¢, (x)). p
is called the standard paring index of the indices ¢ and r. Although it is not
necessary, it make things easier to assume ¢ and r are computable from p. We
assume it here.

Let Ay, ..., A,, B be formulas of first order arithmetic and let x4, ..., x,, be a
finite sequence of variables including all free variables of the n + 1 formulas.
Furthermore, 7y, ..., 7, is a sequence of fresh n-variables. A tuple

(1, ey Ty Aty ooy Apy 71y ooey T, Bl

is called a formula with context. [z1, ..., T, A1, ..., An, 71, ...,] s called con-
text and B is called body. We denote the context by I' and a formula with
context as [I', B]. These notions are borrowed from type theory. They are not
really necessary for our definition but make things much clearer.

24

We define a first order condition “r r [I', B]” for each formula with context
[T, B]. (r is a new free variable.) Although we will define it in English, it can
be formalized by a first order arithmetical formula including function symbol
for ¢ of the index system.

The condition “r r [[', B]” is called the realization or realizability interpreta-
tion of [I', B]. If xy,...,x, is an enumeration of free variables of B, then the
realization of [x1, ..., z,, B] is called the realization of B and we write r r B.
The conditions are defined so that if » r B holds, then r is an index of a total
recursive functions. Such functions are called guessing functions or guessing
realizers of the formula with context. It should be noted that the standard con-
cept of “realizers” do not correspond to gquessing realizers but correspond to
their limits limy g.

The definition of realization is done by cases on B using an induction over
the complexity defined as the sum of the logical signs in Ay,---, A, and B.
In the definition, we intend r to be index of m + n + l-ary total recursive
guessing function g¢(zi,...,Tm, 71, ..., Tn,t) of B. Thus, we may regard it as
a condition defining “guessing function of B”. We will list the definition of
realization below. We say context is realized when r; v [zq,- -+, 2y, A;] holds
fori=1,..,n.

A.1.1 Case 1: B is an atomic formula:

r is an index of a total recursive function and @, (1, ..., T, 71, .oy T, t) cON-
verges whenever the context is realized.

A.1.2 Case 2: B is By N\ By:

r is the standard pairing index of indices s; and s,. If the context is realized,
then sy r [[, By] and sy r [, By).

A.1.3 Case 3: B is By V By:

r is the standard pairing index of indices s; and ss. If the context is realized,
then ¢, (21, ..., T, 1, -y Ty t) converges. Let p be the limit value. If p = 0
then sy r [, By]. If p # 0 then s, r [['; By].

A.1./ Case 4: B is B; = Bs:

r is an index of a total recursive function. We consider a new context ['y:

[xla "'7xmaA17 "'7An7 BlaTla "'7rn7Tn+1]'

25

If Ty is realized, then ¢, (x1, ..., Ty, 71, ooy Th, Ta1,) converges to a value b and
br BQ.

A.1.5 Case 5: B is Vz.C:
r is an index of a total recursive function. We consider a new context I';:
[Ty ey Ty Ty Ay ooy Ay 1y ey T

If Ty is realized, then ¢,(x1, ..., Tm, T, 71, ..., T, t) converges to a value b and
br [Fla O]

A.1.6 Case 6: B is dz.C:

r is the standard pairing index of indices s; and sy. ¢, (21, ..., Tpn, 71y ooy T,y £)
converges whenever the context is realized. sy r [[',C[t/z]], where ¢ is the
numeral representing lim; ¢s, (1, ..., Ty, 71, ooey Ty t).

It is easy to see that a guessing realizer is always a total recursive function.
Similarly to the theorem 7 of [21], the soundness theorem holds, i.e., if A
is provable in HA+X9-DNE, then a number p is effectively computable and
pr A. The partial recursive function ¢, represents a formal version of guessing
function of A in limit-BHK-interpretation.

Without loss of generality, we may assume guessing functions of Va.A(x) and
A = B are trivial. Namely, g(z,0) = g(x,t) for all ¢. Let us assume g be
a guessing function of Vx.A(x). lim; g(x,t) converges to an index of guessing
function for A(z). To realize A, we compute two nested limits lim; @jim, gz, (t)-
It is equivalent to a single limit limy ¢y 1) (t). Let h be a recursive function
such that ¢, (2)(t) = @y (t). Then ¢ defined by ¢'(x,t) = h(x) can replace
g

The realizability given here is different from the one given in [21] in two re-
spects. The realizability in [21] is based on an axiomatic recursion theory
BRFT. Here, acceptable programming systems are used instead. Since ac-
ceptable programming systems may have dynamic complexity measures, the
problem of limits of partial guessing functions in [21] does not arise. A limit
BREF'T system whose guessing functions are restricted to total functions can be
defined for any BRFT with Blum’s dynamic complexity measure (c.f. Lemma
1.1, [11]). Thus, we assumed guessing functions are total as usual.

The other difference is the points where limit are evaluated. As noted above,
guessing functions for implication and universal formulas could be trivial. This
is not so in [21]. On the other hand, guessing realizer of 3x.A was defined so

26

that it includes the value of x. A guessing realizer g of Vo.3y.A(z,y) in this
paper, may return in the limit an index of a guessing function h of Jy.A(z, y)
for input z. Thus evaluation of limit to retrieve y could be postponed till the
limit of A is evaluated. On the other hand, in [21], ¢ was assumed to return a
natural number y itself instead of its guessing function h. Thus, g could not
avoid evaluation of limit and ¢ could not be trivial in general.

Berardi introduced a semantics based on limit-natural numbers [9]. Limit-
natural numbers N* are O-ary guessing functions converging to natural num-
bers. From classical point of view, N* is isomorphic to the standard natu-
ral numbers N. However there is no recursive isomorphism form N* to N.
In this sense, they differ. Berardi has developed constructive theory of non-
constructive functions using this trick. The guessing functions of formulas
with empty context can be regarded as Berardi’s limit-natural numbers. In
this respect, ours interpretation may be thought a non-standard semantics of
number theory with limit-numbers.

27

