
Mathematics based on Incremental Learning

�Excluded middle and Inductive inference�

Susumu Hayashi

Kobe University� Rokko�dai Nada Kobe ��������� Japan

Abstract

Learning theoretic aspects of mathematics and logic have been studied by many
authors� They study how mathematical and logical objects are algorithmically
�learned� �inferred� from �nite data� Although they study mathematical objects�
the objective of the studies is learning� In this paper� a mathematics of which foun�
dation itself is learning theoretic will be introduced� It is called Limit�Computable

Mathematics� It was originally introduced as a means for �Proof Animation�� which
is expected to make interactive formal proof development easier� Although the orig�
inal objective was not learning theoretic at all� learning theory is indispensable for
our research� It suggests that logic and learning theory are related in a still unknown
but deep new way�

� Mathematics based on Learning�

Mathematical or logical concepts seem to be one of the main research targets
of learning theory and its applications� Shapiro ���� investigated how axioms
systems are inductively inferred by ideas of learning theory� We may say that
Shapiro studied how logical systems �axiom systems� are learned� Stephan and
Ventsov ���� investigated how algebraic structures are learned and have given
some interesting learning theoretic characterizations of fundamental algebraic
notions�

We may say that they investigated learnability of the mathematical concepts�
Contrary to them� we are now developing a mathematics whose semantics and
reasoning system are in	uenced by ideas from computational learning theory�
Let us compare these two lines of research�
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In Shaprio
s work� the concepts of validity and models are the standard ones
from Tarskian semantics� and learning of axiom systems in Horn�logic from
models is investigated� On the other hand� we give semantics of the �rst order
formulas by means of learnability�� For example� �y�A�x� y�� which reads as
there exists y satisfying A�x� y��� is interpreted as the value of y satisfying
A�x� y� is learnable from the value of x��

What does y is learnable from the value of x� mean� It means that we have
a learning algorithm to produce an answer according to a learning theoretic
framework� There are several di�erent frameworks of learning theory� such as
inductive inference �incremental learning� and PAC�learning� They are further
classi�ed into subframeworks such as BC�learning and EX�learning�

If we �x one of such learning theory frameworks� then we can de�ne a new
logic�� It may not be a proper logic� We can de�ne a kind of semantics
for it� that is� an interpretation of propositions� but it may not be even closed
under expected logical rules such as modus ponens� In this paper� our learning
theoretic frameworks are restricted to incremental learning� namely� inductive
inference or identi�cation in the limit�

So far� incremental learning is the only good framework for logic� We have
found that subframeworks such as EX�learning and BC�learning have slightly
di�erent meaningful logics� A new learning theoretic framework Popperian
game� has been found through an investigation of relationship between our
mathematics and reverse mathematics �����

So far we do not know the whole picture of the links between logic and learn�
ing theory� Many fundamental questions have not been answered� We do not
even know if there are logics corresponding to frameworks beyond incremental
learning such as PAC�learning� Nonetheless� my thesis is that learning theory
and logic are related much more deeply than we now think� In this largely ex�
pository paper� I will explain known relationships between the rules of classical
logic and incremental learning� which are the bases of my conviction�

� Objectives and backgrounds

The real goal of Limit�Computable Mathematics� abbreviated to LCM� is a
methodology of testing and debugging formal proofs introduced in ����� I will
brie	y explain the background of the research below� A more technically de�
tailed exposition of objectives and backgrounds can be found in �����

Our mathematics was found through an investigation of interactive formal
proof developments� The area is mainly known by the names of proof check�
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ers such as NQTHM� HOL PVS� COQ�� � � � It may be regarded as a branch
of the broad area of formal methods� which aims to utilize formal languages�
formal semantics� and formal proofs for developments of software and hard�
ware systems� Formal veri�cation� formal speci�cations� model checking are
all branches of the formal methods� and formal proof development is a basic
technology for the entire area�

In the mid ��
s formal methods community realized importance of validation
of formal speci�cations� In the formal veri�cation project of the ��bits Viper
chip for military and other safety�critical uses� it was found that errors in
large scale speci�cations are much more serious than had been anticipated and
that the ultimate way to detect them must be somehow informal� Ultimate
requirements of systems are in human minds� They are often unclear and even
unstable� Vague informal things cannot be veri�ed in a formal way� Thus�
informal things must be translated into formal things� However� the errors
may be in the translation of informal things into formal things� Thus� informal
and empirical methodologies are important even in formal methods�

I found similar di�culties in formal proof developments in my own project�
Goals and subgoals �lemmas�� and de�nitions of concepts could be formal�
ized in wrong ways� There was no formal way to detect the wrong formaliza�
tions� However� I found that testing formal proofs under development is an
extremely e�cient way to detect such errors on translation of informal things
to formal things� The PX proof system ����� which was designed to extract
certi�ed� functional programs from formal proofs� could extract programs
�nely representing computational contents of intuitionistic proofs� By testing
such programs in the usual sense� errors in de�nitions and lemmas �subgoals�
in the formal proofs were quickly detected� Since the technique is similar to
a formal method technique speci�cation animation� testing speci�cation on
examples� I called it proof animation� abbreviated to PA�

I proposed to use proof animation to make formal proof developments less
costly in ����� Since the method was applicable only to intuitionistic proofs�
I had to �nd a method applicable to classical proofs� Berardi
s semantics ���
approximating classical proofs by �nitely restricted version of the proofs was
a possible candidate� Just by chance� I found that Berardi
s examples are very
similar to Hilbert
s original reasoning of his famous �nite basis theorem proved
in the late ��th century �see ���� for details�� Akihiro Yamamoto pointed
out to me that both are the same as the limit notions in learning theory�
After Yamamoto
s suggestion� I found that computation in the limit� or
limiting recursion� corresponds to restricted forms of classical principles such
as the law of excluded middle applied to an arithmetical formula with a single
quanti�er� e�g�� ��

�
�formulas� and learning theoretic notions are very useful for

proof animation�
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I will refer to these restricted principles as semi�classical principles�� Logi�
cians including myself tend to think that the limit�recursive functions and
semi�classical principles would not make a good logic� They look so fragmen�
tary� At �rst� I doubted even its closure under the usual inference rules of
constructive logic� Even S� Feferman� one of the most notable logicians of the
present time� had the same impression�

However� to my surprise� the logic de�ned by limiting recursion was very natu�
ral� and remarkably wide realms of mathematical proofs were found to use only
these weak classical principles instead of the full power of classical principles�
Thus� it seemed possible to develop most formal proofs only with semi�classical
principles and animate them by computation in the limit� Since it is based on
the limit� I named such a mathematics Limit�Computable Mathematics� LCM�

To built LCM�tools for formal proof developments� there are some theoret�
ical questions to be solved� The standard limit notations are not adequate
to represent limit�structures of proofs� and so a concurrent calculus of limit
processes must be de�ned and implemented as a kind of programming lan�
guage� It is not known if impredicative reasonings have LCM�interpretations�
Is it possible to extend the proof animation by limit beyond LCM� � There
are some important and interesting theoretical questions to be solved to build
realistic LCM�environments�

LCM is also interesting as a branch of pure mathematics� It seems related to
recursion theory� to reverse mathematics ����� to game semantics ���� and even
to computation theories over real numbers �������� For example� in this paper�
we will sketch an interesting relationship of a very weak principle of excluded
middle to weak K�onig
s Lemma in reverse mathematics and the relationship
is maintained by a sort of learning by erasing wrong hypotheses�

� Semantics

In this section� we explain LCM by giving its informal semantics A formal
semantics is given in the appendix� The semantics of LCM given below is a
variant of Brouwer�Heyting�Kolmogorov interpretation �BHK interpretation�
of intuitionistic mathematics� In the early ��th century� a famed mathemati�
cian L�E�J� Brouwer attacked usage of the traditional Aristotelian logic in
mathematics� He attacked especially the law of the excluded middle A � �A�
Since he interpreted A or B� as there is an algorithm deciding A or B�� the

� Berardi is extending his limit�semantics �� to ��
n
�reasonings� His results suggest

that there might be a way to animate proofs by the law of excluded middle applied
to any arithmetical formula�
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law was the same to him as saying all mathematical problems are decidable
by a universal algorithm�� Thus� he rejected it and created a mathematics
which did not employ such principles� He called his mathematics intuitionistic
mathematics and the usual mathematics was called classical mathematics� �

Morphologically� intuitionistic mathematics is a subset of classical mathemat�
ics in which the law of excluded middle and its equivalents are forbidden�
Brouwer had a philosophical reason to reject the law� and to guarantee cor�
rectness of other rules� However� his philosophical principle was rather subjec�
tive� mysterious and unclear for the rational minds of most mathematicians
and logicians�

Later� Heyting and Kolmogorov gave a much clearer and objective interpreta�
tion for Brouwer
s mathematics without Brouwer
s philosophy� The interpre�
tation is now called BHK�interpretation� Although BHK�interpretation was
much clearer� it was still somehow unclear since the unde�ned notion of con�
struction� was employed and the semantics was explained in informal lan�
guages� To make it ultimately clear� Kleene replaced constructions� with
partial recursive functions and gave a translation of a formula into a formula
representing his version of BHK�interpretation� Kleene named it realizability
interpretation�� Introductory accounts of BHK�interpretation and realizabili�
ties are found in ����������

Our semantics of LCM given below is obtained from BHK�interpretation by
replacing constructions with limiting recursive functions� It will be called
limit�BHK�interpretation� Since BHK�interpretation is rather informal� there
are many di�erent ways to make it formal� Formal versions can be di�erent
to each other in some essential ways� The informal semantics �limit�BHK�
interpretation� may be regarded as a guideline or a framework such as object
oriented modeling paradigm� Thus� it does not specify the details of the se�
mantics� Details must be given by a formal semantics like realizability interpre�
tations� which correspond to actual object oriented programming languages
such as Java� C���

Now we give limit�BHK interpretation of mathematics� We will describe what
�rst order logical formulas of the forms� �x�A�x�� �x�A�x�� A�B� A�B� A� B

mean in limit�BHK interpretation for each case� The crucial cases are A � B

and �x�A�x�� Brouwer regarded correctness of A � B as the ability to decide

which of A and B is correct and to prove the correct one� �For example� let A
denote the statement ZF�set theory is consistent� and B denote the statement
ZF�set theory is inconsistent�� Then the statement A�B holds if we can �nd
out which statement C � fA�Bg is true and we furthermore give a proof of
the correctness of C� Since consistency of a formal system is a ��

�
�statement�

� Intuitionistic mathematics have many variants� Among these variants are con�

structive mathematics and Brouwer�s mathematics ����
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there is no general algorithm to decide it and G�odel
s incompleteness theorem
tells us that it is impossible to assert one of them by a reasonable method�
even if we believe in the consistency�

In limit�BHK interpretation� the obligation to decide� A or B is relaxed to
learn�A orB� We say A�B is correct in the sense of limit�BHK interpretation
i� we have a computable guessing function g�t� such that

��� g�t� converges to � or ��
��� if limt g�t� � � then� A is correct in limit�BHK�sense�
��� if limt g�t� � � then� B is correct in limit�BHK�sense�

Let g�t� be

g�t� �

���
��
� if a proof of a code smaller than t derives a contradiction

� otherwise

Obviously g satis�es the three conditions above� Thus� the law of the excluded
middle applied to the consistency of ZF�set theory is correct in the sense of
limit�BHK�interpretation�

Remark � Assume that g is a guessing function of some function h� How

does this h look like� A guessing function of an n�ary function is n � ��ary�
Since g is unary� it is a guessing function of a ��ary function h� That is� h

satis�es h�� � x for some x� Although a guessing function of a ��ary function

seems to be rare in learning theory� it is quite useful in LCM�

Note that we need the law of excluded middle to prove the convergence of g�
Thus� this does not help to decide if the system is consistent or not at all� �

ZF�set theory is consistent or not in limit�BHK�interpretation� means that
consistency of ZF�set theory is computable in the limit� Since we cannot com�
pute the limit in Turing
s sense� this does not help to understand consistency
of formal systems anyway�

However� limit�BHK�interpretation gives a systematic way to approximate a
non�computable truth by a guessing function� The approximation given by a
guessing function helps to understand computational contents of a class of non�
computational or non�constructive proofs� It was the original aim of my proof
animation technique to give a method by which classical proofs in mathematics
are computationally analyzable through actual execution� Although LCM�
proofs cannot be executed in Turing
s sense� they are approximately executable

� Berardi �� has given a limit�semantics without this kind of classical reasoning at
meta�level� Since the condition of convergence is replaced with a computationally
weak one in his semantics� it does not give the limit value either�
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by guessing functions� And� such approximate executions are adequate for
proof animation as discussed in section ��

The interpretation of A�B above has a defect� We have to assert A is correct
in limit�BHK�sense� if limt g�t� is �� Just as the guessing function g approx�
imates the truth of the outermost disjunction of A � B� a guessing function
approximating the truth of A must be given� Technically� it is better to give
such a guessing function for A together with the guessing function g for the
disjunction� The corrected de�nition of a guessing function of A � B is as
follows�

�	� g�t� is a pair �g��t�� g��t�� and g�t� converges as t���
�
� if limt g��t� � � then� g� is a guessing function of A�
��� if limt g��t� �� � then� g� is a guessing function of B�

Similarly� asserting the existential statement �x�A�x�� is interpreted to give
its guessing function g�t� with the following conditions�

�	� g�t� is a pair �g��t�� g��t�� and g�t� converges as t���
�
� g� is a guessing function of A�m�� where m � limt g��t��

Asserting an existential or disjunctive formula means giving a guessing func�
tion by which we can compute in the limit the information on the existential
quanti�er x of �x�A�x� and information for A�x�� or on disjunction the
correct disjunct of A � B and information for the disjunct�� Such a guessing
function will be called a guessing function of the statement� In general� giv�
ing a limit�BHK�interpretation to a formula is de�ning the conditions of the
guessing functions for the formula� When a guessing function satisfying the
conditions exists� the formula is valid or correct in limit�BHK�interpretation�
Such a formula will be said to be limit�BHK�correct for short�

The conditions on a guessing function g of a conjunctive statement A � B is
given as follows�

�	� g�t� is a pair �g��t�� g��t���
�
� g� is a guessing function of A and g� is a guessing function of B�

The condition of a guessing function g�x� t� of a universal statement �x�A�x�
is

� g�x� t� converges to a guessing function of A�x� for all x�

Similarly the condition of a guessing function g�x� t� of A� B is

� if f is a guessing function of A� then g�f� t� converges to a guessing function
of B�
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The conditions for the universal quanti�er and the implication are somehow
problematic� since limits of guessing functions are again guessing functions�
There are two major di�erent approaches on functions incidentally correspond�
ing to the approaches to functions in EX�learnability and BC�learnability�

In his original interpretation� Kleene treated functions as programs� or in�
dices� as EX�learnability� This approach is called intensional� Kreisel�s modi�
�ed realizability interpretation can treat functions as their extensions as in the
usual set theoretical mathematics� i�e�� two functions are equal i� their graphs
are equal� This approach is called extensional and apparently corresponds to
BC�learnability by Case and Smith� Kleene�style intensional interpretation is
given in the appendix� A realizability using extensional approach is possible
by the construction in �
�

Finally� we give interpretation of non�logical formulas such as equations and 	�
A non�logical atomic formula F is considered limit�BHK�correct i� it is correct
in the ordinary sense� Since asserting a statement means giving a guessing
function� we have to de�ne guessing functions for F � Since guessing functions
are meaningless for this case� we may take any guessing function converging
as far as F is correct in the sense of Tarski semantics� The condition on a
guessing function g�t� of an atomic non�logical formula F is

� g�t� converges and F holds�

The convergence condition is not very important� We may drop it�

Note that an interpretation of negation 
A has not been given� It is understood
to be an abbreviation of A � 	� and its semantics is given by this formula�
	 is the atomic formula representing a contradiction such as � � 	� By the
de�nition for atomic formulas� there is no guessing function of the formula
	� which never holds� If A and A� 	 both have guessing functions� then it
yields a contradiction� Thus if A� 	 has a guessing function� A does not� If
A does not have any guessing function� then any function g�t� is a guessing
function A� 	 since the condition becomes vacuously true� Namely� A� 	
is limit�BHK�correct i� A cannot have any guessing function�

It would be worth noting that if guessing functions g�x� t� are all trivial�
i�e� g�x� t� � g�x� ��� then limit�BHK�interpretation becomes the usual BHK�
interpretation of intuitionistic mathematics�
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� Semi�classical principles

In this section� semi�classical principles of LCM are introduced� Detailed ex�
positions on them including prenex normal form theorem and a provabil�
ity hierarchy can be found in �	�� A ��

n�formula is a formula of the form
�x��x� � � �Qxn�A� where A is a formula for a recursive relation� ��

n�formula is
de�ned similarly�

� ��
n�LEM is A�
A for any ��

n�formula A� LEM stands for Law of Excluded
Middle�

� ��
n�LEM is de�ned similarly�

� ��
n�DNE is 

A� A for any ��

n�formula A� DNE stands for Double Nega�
tion Elimination�

By the same argument for the consistency of ZF�set theory� ��
��LEM �x�A�x��


�x�A�x� is limit�BHK�correct� Since x is recursively computable when �x�A�x�
holds� ��

��LEM �x�A�x��
�x�A�x� is also limit�BHK�correct� Take T �e� e� x�
as A�x�� where T is Kleene�s T�predicate� Then giving a realizer for ��

��LEM
or ��

��LEM means giving a function answering to Turing�s halting problem�

Next we consider ��
��DNE� Assume 

�x��y�P �x� y� is limit�BHK�correct for

a recursive predicate P � Then �x��y�P �x� y� holds classically and we can de�ne
a guessing function g converging to such an x as follows�

g�t�����h�t���

h���� ��� ���

h�n � 	��

���
��
����h�n��� ���h�n�� � 	� if P ����h�n��� ���h�n���

����h�n�� � 	� �� if 
P ����h�n��� ���h�n���

�� and �� are projection functions for pairs� i�e�� ����x� y�� � x and ����x� y�� �
y� The function h tries to traverse the depth two trees de�ned by the branches
fhx� yi jP �x� y�g�

Since a trivial guessing function of �y�P �x� y� is given if �y�P �x� y� is classically
true� it is easy to de�ne a guessing function k�t� for �x��y�P �x� y�� Thus�
��
��DNE is limit�BHK�correct with the guessing function l�x� t� de�ned by

l�x� t� � k�t��
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� Learning in the limit and proof animation

In this section� I will explain why learning� in the limit would be useful for
proof animation� The contents of this section largely depends on clari�cations
and suggestions by one of reviewers of the paper�

The semantics described above is based on the notion of computation in the
limit� appeared in �
��� Computation in the limit means that functions are
computable� relative to the halting problem K as an oracle� Such functions
are also simply called K�recursive� In this respect� the semantics described in
the previous sections can be understood in the context of recursion theory�

On the other hand� Gold�s model of learning in the limit concerns a limiting
process of another type� the learner sees more and more information on an
object X and then has to come up with �nite information answering the
question under investigation� The �nite information is a program for X in
case of function learning� an enumeration procedure for a set X in the case
of learning r�e� languages� an index of a class in the case of classifying some
sequences according to a �nite or in�nite number of classes�

Although it is possible to interpret our realizability interpretation in pure
recursion theoretic framework� it is better to relate it to learning theory and so
doing is much more suggestive and productive� A typical example which relates
learning theory to LCM is the minimum number principle �MNP� there is
an m such that for all n� f�m� � f�n� holds�� where f is a function from the
natural numbers to the natural numbers� It is formalized as follows�

�m��n�f�m� � f�n��

The function f may be regarded as a recursive function� and then the real�
izability interpretation of this principle maintains that m is obtained by a
K�recursive function� But� it is much better to regard f as an input stream in
the sense of programming language� An input stream f���� f�	�� ��� is a possi�
bly in�nite series of data supplied by the environment which is uncontrollable
and unpredictable� A series of characters input from keyboard is a typical
input stream� Then� no one can predict the next value of the input stream�
Nonetheless� we can �nd� the value m attaining the minimum of f�m� by
learning in the limit process� We write down zero on a blackboard� When�
the next value f�	� comes in from the stream� we compare f��� on the board
with f�	�� If f�	�  f��� holds� then we do nothing� If f��� � f�	� holds�
then we erase � on the board and write 	� We continue the same process
in�nitely� Eventually� the number m on the board attains the minimum of
the value of the f�m� and stop to change� This is a learning process in the
sense of algorithmic learning theory� Actually� this problem of �nding m is
the same as the classi�cation problem of functions with respect to the classes
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Cy � ff jy � minff�x�jx � �� 	� ���g�

More important yet� learning in the limit is better than K�recursiveness in
modelizing the debugging process as Shaprio �
�� used learning theory for
his algorithmic debugging� Program debugging process is interactive and the
input stream f can be considered as ever expanding set of test cases in the
sense of xUnit testing framework in ���� EX�learning is easily modelized by
limiting realization of the formula �e��x�f�x� � �e�x�� where �e stands for the
recursive function of the index e� and the stream f���� f�	�� � � �� or equivalently�
the set f�x� f�x��jx � �� 	� � � �g could be regarded as the complete test suite

for the program �e which implements f � �

Proof animation is a technology for debugging proofs� Since a proof is not a
function or a set� there is no complete test suite for a proof� Nonetheless� as
the MNP could be interpreted by a learning process� debugging of proofs is
naturally modelized by learning process via our realizability interpretation� To
show how proof animation by learning in the limit is adequate for debugging
of proofs� we illustrate an imaginary session of proof animation in the below�

Assume that I was developing a formal proof of a sort of MNP� I de�ne a
metric on the interval �m�n� of the set of integers by the distance from n� For
example� the metric of n is � and the metric of m is jn�mj� I introduce a
linear order by means of the metric� Thus� n is the smallest element and n� �
is larger than n� �� since their metrics are � and �� respectively�

What I wish to prove is MNP for this ordering�

�x��y�Pm�n�f�x�� f�y��� �	�

where f is a function from the natural numbers to the interval and Pm�n�x� y�
represent x is less than or equals to y in the ordering��

The metric of x is formally de�ned by jx� nj� Thus� the formal de�nition
of Pm�n�x� y� should be jy � nj  jx� nj� My proof language has the built�in
predicate � but does not have a built�in for �� So I have to use �sign� Before
starting to type in the formal de�nition� I felt tired and went to the common
room to have a cup of tea� When I returned to the o�ce� I began to type in
the formal de�nition of Pm�n�x� y� as jx� nj  jy� nj�

I develop some lemmas and my very clever proof checker automatically chose

� A test suite is a group of test cases� by which we often �specify� a small unit of
functionality of the program to be built� See ��� for details� It would be worth to
note that TDD methodology in ��� can be considered as a practical version of pro�
gramming by examples� which is an application of learning theory to programming�
See ��	� for detailed discussions�

		



an appropriate mathematical induction and proves the principle �	� from the
lemmas� Since the proof checker proved it� we are very sure about the correct�
ness of the principle�

It might be better to animate the proof to see what kind of limiting compu�
tation process presents in the proof� f may be programmed� but it is easier to
input the values of f interactively from the keyboard� Set m � �
 and n � ��
We input as f��� � ��

The tool returns the �rst guess x would be � and the value f�x� is ��� It�s
ok� I have given only one date�item to the animator� Thus� it should be the
guess�

Next� I will input f�	� � � to see the mind change� Since � is the least element�
a mind change must happen� I type in���� The proof animator replies I do not
change mind�� Alas� What happened� Maybe a serious bug in the animator�
I got crazy and type in f�
��
�� The animator replies I changed my mind�
x would be 
 and the value f�x� is 
��

The mind changes are just opposite to the expected� I suspect my de�nitions
and �nd Pm�n�x� y� was de�ned jx� nj  jy� nj instead of jy� nj  jx� nj�

But� why the proof checker proved the wrong proposition� No� it did not prove
wrong proposition� The two orders of x and y de�ned by jx� nj  jy� nj and
jy� nj  jx� nj are symmetrically isomorphic� The proof checker proved the
correct proposition� Only one thing was wrong� The de�ned order was not the
intended one�

Since the proof checker cannot know the intention in my mind� it could not
detect the slip� Only when I interacted with the proof consulting my intention�
I could �nd the gap between the formal de�nition and the intention�

Note that the interaction was possible since we use limiting realizability� since
the principle is essentially non�constructively and so the constructive proof
animation in �	�� is not applicable� Furthermore� learning in the limit naturally
modelized the interaction sequence between user and animator�

� Mind change hierarchy of propositions

In the realizations of semi�classical principles given in section �� realizers for
��
�� and ��

��LEM are apparently simpler than the realizers for ��
��DNE� The

�rst guess of the realizer given for ��
��LEM ���

��LEM� is �xed to the � side �
��
side� and a mind change happens if a counterexample is found� For example�
the guessing function of the realizer for ��

��LEM is de�ned by g�t� � � if

	




�x � t�A�x� and g�t� � 	 if �x � t�
A�x�� Thus realizers of ��
��LEM belong

to ���
� class of Ershov�s boolean hierarchy �	��� On the other hand� the realizers

for ��
��DNE need the full Ershov hierarchy� In this sense� ��

��DNE is stronger
than ��

�� and ��
��LEM� and ��

�� and ��
��LEM have the same strength�

Some mathematical propositions have intermediate strengths� For example�
the natural realizer of MNP �m��n�f�m� � f�n� does at most f����time mind
changes� �We guess m � �� If we �nd a smaller f�i� then we change mind
to m � i and repeat the process�� These examples show that the formulas
realizable by recursive guessing functions may be classi�ed �nely by Ershov�s
mind change hierarchy or something like that� We have not known what kind
of mind change hierarchy is appropriate for classifying LCM�valid formulas
and their realizers� One of the reviewers has suggested Parsimony Hierarchy
by Ambainis� Case et al� ��� might provide a more direct classi�cation than
Ershov hierarchy�

Even if we use Ershov�s idea� our hierarchy may di�er� Our guessing func�
tions are not always converging for all natural numbers� � This might make
di�erence from the original Ershov hierarchy� since limiting partial functions
of partial recursive functions may be beyond ��

� �see Yamazaki�s example in
�
	���

� A hierarchy by formal provability

In section �� we considered the strengths of semi�classical principles via in�
terpretations �semantical hierarchy�� There is another kind of hierarchy via
derivability �syntactical hierarchy�� Hierarchy via derivability is the one used
in proof theoretic studies such as reverse mathematics� Some base systems
are �xed and logical principles are compared with their strength via these sys�
tems� Proof checkers are formal systems implemented on computers� Thus this
kind of research is quite important for proof animation� It would show which
kind of theorems can be animated by PA�LCM�technology� and which kind of
semi�classical principles are appropriate to animate a particular theorem�

We call it calibration of classical principles� The basis of the calibration theory
is the syntactical hierarchy of semi�classical principles� The hierarchy of arith�
metical semi�classical principles have been determined in �	�� The next step
is to classify classical theorems with respect to this hierarchy� Some results
have been already known� MNP and ��

��LEM are provably equivalent in the

� Every limit of partial functions can be extended to the limit of a total function�
However� the limit obtained might not be total by itself� Thus� we cannot replace
partial functions with total functions�
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standard formal system of �rst order intuitionistic arithmetic augmented with
a free function variable� A formulation of existence of step functions such as
y � �x� over real numbers is equivalent to ��

��LEM� Toftdal �
�� has given
some elaborated calibration results in analysis and Berardi ��� has given some
calibration results for ��

��LEM or stronger� Etc� etc��

The standard intuitionistic formal systems are too weak to derive ��
��LEM

from ��
��LEM by the lack of ability to prove ��

��DNE �Markov�s principle��
��
��DNE is realized even by the original Kleene realizability� Thus some in�

tuitionistic systems contain it� However� most systems do not contain it� For
example� standard logic of constructive proof checkers as COQ does not in�
clude it� Similarly� ��

��DNE is not derivable from ��
��LEM� Thus� this hierar�

chy is not the same as expected in the standard recursion theory� There is a
weaker but still natural form of existence statement of Gauss function which
is equivalent to ��

��LEM but not to ��
��LEM� Since the di�erence actually

a�ects mathematical theory to be formalized� the syntactical hierarchy should
be analyzed�

In the syntactical hierarchy� MNP and ��
��LEM are equivalent� since MNP

is derivable from ��
��LEM by mathematical induction �	��� Mathematical in�

duction enables to use ��
��LEM repeatedly� For example� �� mind changes

in Ershov�s sense is easily attainable by double induction� which is derived
from the ordinary mathematical induction� Then a natural question arises� Is
it possible to make the syntactical hierarchy �ner according to mind change

hierarchy� Linear logic is sensitive to the number of applications of axioms or
assumptions� A �ner interpretation we should seek may be an interpretation
of linear logic or something like that� A �ne hierarchy might be obtained by
restricting induction principle as reverse mathematics �
���

� Weak K�onig Lemma� LLPO and Popperian game

In the syntactic hierarchy of LCM principles� Weak K�onig Lemma� abbreviated
to WKL� is especially interesting� WKL is a theorem for binary tree�

� Any binary�branching tree with in�nite many nodes has an in�nite path�

Harvey Friedman found that this principle is logically as weak as Hilbert�s
�nite standpoint in a certain logical environment but proves many important
mathematical theorems such as the completeness theorem of �rst order pred�
icate logic� On this unexpected �nding� Simpson and his colleagues developed
an interesting theory of reverse mathematics� �
��� They calibrated mathe�
matical theorems by means of WKL or the like� For example� they calibrate
which theorem is proved by WKL and WKL is necessary to prove it�

	 



After the low basis theorem and results of reverse mathematics� Ishihara and
Kohlenbach pointed out that WKL would be important in LCM as well� They
and Berardi� Yamazaki and Hayashi jointly found some interesting relation�
ships between WKL and Lesser Limited Principles of Omniscience �LLPO��
a principle in constructive mathematics� and the position of WKL in LCM
hierarchy�

The syntactical hierarchy of LCM including WKL was very similar to the one
of reverse mathematics� Although our hierarchy is �ner than the one of reverse
mathematics� many techniques developed in reverse mathematics were quite
useful to investigate our syntactical hierarchy� �

After the works� I raised an open problem to �nd a learning theoretic frame�
work that corresponds to this weak classical principle in the proceedings ver�
sion of the present paper �	��� An unexpected solution was found very soon
after sending the manuscript to the editor� It turned out that a series of realiz�
ability interpretations coined by Lifschitz �
�� and extended by van Oosten �
��
is the right framework to represent logical aspect of WKL� Although Lifschitz
and van Oosten were unaware of learning theoretic aspects of their works� it is
straightforward to give a learning theoretic framework corresponding to their
interpretation�

The underlying idea of our learning theoretic framework resembles the philoso�
pher Karl Popper�s falsi�ability� or refutability�� e�g�� �
 �� Popper claimed
that a theory is scienti�c only when it is clearly refuatble by a counterexample�
A theory refuted by a counterexample drops and the other theories survive�
By such selection with refutation� science evolves and converges to the truth�

We formulate Popper�s idea in an algorithmic way� We assume that some
theories are competing in a game to predict the value of a given scienti�c
constant� We restrict ourselves algorithmically� It means that realistic things
must be computable relative to observations� The observations can be modeled
as an oracle� We consider only functions and reals etc� recursive relative to the
oracle�

Thus a scienti�c constant is a recursive real number relative to the oracle� Each
theory has its hypotheses by which the constant value is logically predicted�
We assume that every theory is algorithmically scienti�c in Popperian sense�
namely� every hypothesis is ��

��sentence� which is the only formulas refutable
algorithmically� Since a theory has only �nitely many hypotheses� we regard
a theory as the conjunction of these ��

��sentences� Thus a theory itself is a
��

��sentence� By formalizing the situation� we have a framework which I call

� The axiom of ACA� of reverse mathematics represents the entire arithmetical
hierarchy� i�e� the union of ��n� for all n� On the other hand� 
�

n�LEM represents
only �

�n��
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Popperian game�

A Popperian game is a �nite set of players f�a�� P��x���� � � � � �an� Pn�xn��g�
Each player is modeled by a pair of predicted value ai and its background
theory Pi�xi�� A theory Pi�xi� is a predicate recursive relative to the oracle�
which is interpreted as the ��

��proposition �xi�Pi�xi��

If Pi is refuted by a counterexample u such that Pi�u� is false� then the player
�ai� Pi� looses and drops from the game� It is possible that more than one
player win� Even none may win� since the game is continued even when only
one player remains� Even if all other theories are refuted and only one theory
remains� the theory remained may be incorrect�

The set of winners of a Popperian game S � f�a�� P��x���� � � � � �an� Pn�xn��g
is de�ned by f�ai� Pi�xi��j�xi�Pi�xi� holdsg and is denoted as Win�S�� The set
of winning values is de�ned by faij�ai� Pi�xi�� � Win�S�g and is denoted by
WV�S��

A system of multivalued functions is de�ned by means of Popperian game
after Lifschitz realizability �
��� A multivalued function over natural numbers
is a function from the set of natural numbers to the set of �nite sets of natural
numbers� A multivalued function f is PG�computable or Popperian game�

computable� if there is a function g recursive relative to the oracle such that
g�x� is a code of a Popperian game f�ax� � P

x
� �x���� � � � � �a

x
n� P

x
n �xn��g de�ned

for x and f�x� � WV�g�x�� holds�

Lifschitz and van Oosten realizability interpretations can be reconstructed
as realizability interpretations by PG�computable multivalued �partial� func�
tions� �

The logical �or set theoretical� principle embodying the notion of Popperian
game �or PG�computability� is WKL in the following form�

�f��T is an in�nite binary tree recursive in f � �g��g is an in�nite path of T ��

This scheme is realizable by realizability interpretations with PG�computable
functions�

The important point is that we can apply the same principle again to trees
constructed recursively in the path g just as in the usual logic� This is the
di�erence from the other LCM principles such as ��

��LEM� which cannot be
applied repeatedly�

� Note that the oracle is not essential for their original cases� The only reason for
using the oracle is to make the Popperian game more natural from the viewpoints
of learning theory and discovery science�
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LCM�WKL is intuitionistically equivalent to ��
��LLPO���

��b�AC���� where
��

��LLPO is

�x�
��y�Af �x� y� � �y�Bf�x� y��� �y�
Af �x� y� � �y�
Bf�x� y�

and ��
��b�AC�� is a very weak axiom of choice

�x���y�Af �x� y� � �y�Bf �x� y���

�g��x��g�x� � �� �y�Af�x� y�� � �g�x� � 	� �y�Bf�x� y���

In these schemes� Af and Bf are predicates recursive in f �

��
��LLPO is an LCM version of an intuitionistic principle Lesser Limited

Principles of Omniscience� �	��� LLPO may be regarded as a very weak law of
excluded middle� ��

��LEM implies it� ��
��b�AC�� is also derivable from ��

��LEM
with a help of very weak function principle�

These ultra weak laws of excluded middle are yet adequate to prove many
important theorems constructively� e�g�� the completeness theorem of predi�
cate logic� This fact remarkably resembles reverse mathematics �
��� Actually�
proofs of corresponding results in reverse mathematics go through in LCM
without almost any changes�

A classical formal system WKL� of Weak K�onig Lemma in reverse mathemat�
ics has a countable model which has only countably many sets coded by a
low set� 	 Another realizability interpretation which realizes these weak LCM
principles can be obtained by the standard Kleene realizability interpretation
by means of partial functions recursive in the countable model�

� A game semantics

One of the origins of LCM was Berardi�s approximation interpretation of clas�
sical logic ���� Berardi�s interpretation was motivated by Coquand�s game se�
mantics for classical logic �	
�� Thus� it is natural that there are some rela�
tionships between Coquand�s game semantics and LCM semantics� One of the
reviewers of the present paper� who is perhaps unaware of Coquand�s game
semantics� outlined a game semantics with mind changes and asked me if the
semantics or alike is equivalent to LCM for the prenex normal forms� The
mind change rule and convergence criteria that the reviewer gave were not
clear� Thus� we understood it as Coquand�s semantics�

	 A set is low� if the jump of its degree is equal to the degree ���
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Coquand�s semantics is fully classical and is thus beyond LCM� However� it
turned out that Coquand�s game semantics coincides with LCM realizability
interpretation� when its mind change rule �backtracking rule� is restricted to
a simpler rule� The game with the simpler rule was practically identical to the
one considered and called simple backtracking in a preliminary version of �	
��

The restricted rule is more natural than the one given in �	
� from the game
theoretic point of view� It is likely that this game semantics is a key to better
understanding of LCM semantics� and it would give a better proof animation
methodology� Here� I brie!y report the semantics as an answer to the reviewer�
This is a joint work with Thierry Coquand and Stefano Berardi� and we are
still working on its details�

In game semantics� e�g�� �	
�� only positive formulas are considered� A for�
mula is positive i� it is built up from atomic formulas for recursive predicates
with only �� �� � and �� In the standard game semantics of logic� formulas
are in�nitary propositional formulas with in�nite or �nite disjunctions and
conjunctions as connectives� It is easy to map positive formulas of �rst order
arithmetic to such in�nitary propositional formulas� Since LCM semantics is
not de�ned for such in�nitary formulas� we consider only positive formulas of
arithmetic� Furthermore� positive formulas are constructively transformed to
prenex formulas� For example� consider a generic instance of ��

��LEM

�x��y�T �e� x� y� � �a��b�T��e� a� b�� �
�

where T is the Kleene�s T�predicate and T� is an atomic formula represent�
ing the negation of T � This is equivalent in HA �Heyting Arithmetic" The
�rst order formal system of intuitionistic arithmetic� to the following prenex
formula�

�x��a��b��y���x � � � T �e� x� 	� y�� � �x � � � T��e� a� b��� ���

It is easy to transform any positive formula to a prenex normal form in a
similar way� We consider only prenex formulas below�

We brie!y explain Coquand�s game semantics with deep mind changes �back�
tracking� developed in �	
�� A game on a prenex formula is played by two
players Eloise and Abelard� We illustrate the game by an example

�x���y���x���y��x� � y� � x� � y��

Eloise is supposed to give a witness for existential quanti�er� �x� and �x��
Abelard is supposed to give a witness for universal quanti�er� �y� and �y��
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Since the outermost quanti�er is �x�� Eloise moves �rst� e�g�� by taking x� � ��
Then� Abelard moves� e�g�� by y� � 		� Then� for example� Eloise moves with
x� � 	� and Abelard moves with y� �  � Now� it�s Eloise�s turn� But� there is
no quanti�er anymore� thus� they start to evaluate which side wins by looking
at the innermost atomic formula� Now� it is ��		 � 	�� � Since this is true�
Eloise wins� If she had played x� � 	�� Abelard could play y� � � to make
the formula false � � 		 � 	� � �� Then� Eloise loses and Abelard wins� Note
that Eloise has a winning strategy taking x� � x� � y�� We suppose that all
moves executed are recorded and the both players can review them anytime�
This is the standard notion of games associated to prenex formulas� It is easy
to see that Eloise has a recursive winning strategy i� the formula of the game
is recursively realizable in Kleene�s sense�

Coquand extended this notion of game to classical logic� In Coquand seman�
tics� Abelard plays just as in the game described above� but Eloise is allowed
to change mind� She is allowed to go back to any point in the game so far
played� We may assume that all the moves are recorded on a piece of paper
in the chronological order� Eloise may change her mind on her turn� She may
!ush the current status of the play and reset it to a past status of the play�
For example� suppose that she mistakenly moved as x� � 	 in the above play
and Abelard moved as y� � � and won� When she noticed her loss� she may
backtrack to the position of her move for x� and say x� � 	�� Then she can
win� This backtrack is also recorded on the paper�

It is known that a prenex formula is classically valid i� it has a recursive
strategy in the games with backtracking� I describe a winning strategy for
��
��LEM ��� given above�

Below� Abelard will be denoted by � and Eloise will be denoted by �� A round

in which � moves with x � 		 and � moves with a � � will be denoted
by �x � 		" a � ��� A status of a play is a �nite sequence of rounds and
will be denoted as �x � �" a � ��� �b � �" y � 		��� For example� the �rst
example of play which led to ��s win �� 		 � 	��  � is denoted by a status
�x� � �" y� � 		�� �x� � 	�" y� �  ��� Note that status of the play was called
occurrence� in �	
�� A play with backtracking consists of �nite sequence of
status u�� u�� u�� � � � starting with empty status� un
� is obtained from one of
ui �i � n� by adding a round�

I will give an example session of Eloise�s recursive winning strategy for ����

u�	 �� The initial empty status consisting of zero rounds�
u�	 �x � �" a � A���� The �rst round� A� is a number played by ��
u�	 �x � A� � 	" a � A���� � backtracks to u� and replay with x � A� � 	
and asks � the next move� He moves with a � A��

u�	 �x � A� � 	" a � A��� �b � 	" y � A���� A new round is added after u��
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��s move b � 	 is a dummy� After this� we have two cases� If T �e� A�� A�� is
true� then � wins and � stops the play� If it�s false� � backtracks to u� and
continues to play as follows�

u�	 �x � �" a � A��� �b � A�" y � A���� Then� � wins with T��e� A�� A�� for
any A�� since T �e� A�� A�� is false�

A winning strategy for � is modeled by a function ��u�� � � � � un�� which gives
the next ��s move� namely one of the following�

�i� ��u�� u�� u��� is a number� e�g� 	 of b � 	 in u�� �x � A� � 	" a �
A��� �b � 	" y � A��� above� No backtracking� in this case�

�ii� ��u�� u�� u�� u��� is a pair of a backtracking point and a number� e�g��
�u�� A�� for u�� �x � �" a � A��� �b � A�" y � A��� above� First� the
current status is set to u�� �x � �" a � A��� and Eloise moves with
b � A�� A backtracking takes place� in this case�

See �	
� for details�

As we have seen� Coquand�s game validates more than LCM� The formula
��� is not realizable by limiting functions� since ��

��function cannot decide the
universal ��

��formula �x��y�T �e� x� y�� Thus� the game semantics with the full
backtracks does not characterize LCM semantics� However� when backtracks
are restricted to simple backtracks� the game semantics coincides with LCM
semantics�

Recall that a play with backtracking was a �nite sequence of status u�� u�� u�� � � ��
where the condition

un
� is obtained from one of ui �i � n� by adding a round

is met� We restrict the backtrack points to the substatus of un� i�e��

un
� is obtained from one of ui �i � n� by adding a round� and such a ui
must be a substatus of un�

Status S� is a substatus of status S� i� S� is a segment of S�� Namely� S� is
obtained from S� by popping up� some rounds from the tail� Thus� a more
natural equivalent de�nition is

A play with simple backtracking consists of a �nite sequence of statuses
u�� u�� u�� � � � starting with the empty status� un
� is obtained from a sub�
status of un by adding a round�

The original game in �	
� has a quite complicated form of backtracking� if
we think of the game as a debate� Eloise can not only change her mind� but
also resume a previous position in the discussion that she had given up for a


�



while� This complicated behavior is precisely what is forbidden in the simple
backtracking�

A game consisting of plays with simple backtracks is called a simple game�
Observe that the strategy for ��� backtracks from the status u� �x � A� �
	" a � A��� �b � 	" y � A��� to the status u� �x � �" a � A���� which is not a
substatus of u�� It is a deep backtracking not allowed in simple games�

Actually� we can prove for any prenex normal formula that there is a recursive
winning strategy of simple game for � i� the formula is realizable by the
LCM�realizability interpretation� which is given in the appendix�


� Conclusion

Researches of LCM has begun recently� There are still plenty of problems to be
solved� LCM is a mathematics of approximation in a very wide sense including
identi�cation in the limit� In practical mathematics� some kinds of approxima�
tions are inevitable� We are trying to relate LCM to practical mathematics like
numerical analysis and computer algebra� Theories and techniques developed
in learning theory must be very useful and indispensable in these researches�

Investigations of links between learning theory� reverse mathematics and LCM
must be fruitful to understand the relationship between learning theory and
LCM� There are some interesting resemblances between these three� It has
been shown that the ideals of the polynomial ring over the rationals in n

variables is EX�learnable with mind change bound �n but not less than �n �
���
In reverse mathematics� Hilbert �nite basis theorem for the same polynomial
rings for all n is equivalent to trans�nite induction up to �� �
��� In LCM�
the same theorem is proved by n�fold induction and ��

��LEM� which lead to
�n mind change in Ershov�s sense� Are there any formal relationships between
these areas by which these resemblances are clearly explained�

Another challenging problem is to �nd logics corresponding to the other
paradigms of learning theory such as PAC�learning� PAC�learning does not
straightforwardly correspond to the standard logic� A logic of PAC�learning
will be a kind of probabilistic logic�

It is known that Logic of discovery � � by Bardzins� Freivalds� and Smith re�
sembles LCM at the lower level of hierarchy� Are there any deeper relationships
between them�
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A Realizabilities

In this appendix� a Kleene style realizability for �rst order LCM and a modi�ed
realizability for LCM are given� A realizability similar to the Kleene style
realizability has been given in ����� The one given here is designed in a little
bit more learning theoretic way and closer to Berardi�s limit	semantic �
��

It should be noted that if guessing functions g�x� t� are all trivial� i�e� g�x� t� 
g�x� ��� then the realizabilities given below turn to realizability of intuitionistic
logic� Then realizers are computable �partial� functions�

A�� Kleene style limit�realizability

We give a Kleene style limit	realizability interpretation� In this approach� we
regard guessing functions as their indices� Thus we assume � an acceptable pro	
gramming system or an acceptable system of indices of partial recursive func	
tions �see ������ We assume a standard coding of �nite sequences of numbers
and write� e�g�� �a�� ���� an� for the code of the sequences a�� ���� an� A pair is re	
garded as a sequence with two elements� �i is a computable function retrieving
i	th element of sequence as a code� An index of n	ary function f�x�� ���� xn� is
regarded as an index of �	ary function f � such as f ���x�� ���� xn��  f�x�� ���� xn��
We �x an algorithm to compute p from q� r so that �p�x�  ��q�x�� �r�x��� p
is called the standard paring index of the indices q and r� Although it is not
necessary� it make things easier to assume q and r are computable from p� We
assume it here�

Let A�� ���� An� B be formulas of �rst order arithmetic and let x�� ���� xm be a
�nite sequence of variables including all free variables of the n � � formulas�
Furthermore� r�� ���� rn is a sequence of fresh n	variables� A tuple

�x�� ���� xm� A�� ���� An� r�� ���� rn� B�

is called a formula with context� �x�� ���� xm� A�� ���� An� r�� ���� rn� is called con�

text and B is called body� We denote the context by � and a formula with
context as ��� B�� These notions are borrowed from type theory� They are not
really necessary for our de�nition but make things much clearer�
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We de�ne a �rst order condition �r r ��� B�� for each formula with context
��� B�� �r is a new free variable�� Although we will de�ne it in English� it can
be formalized by a �rst order arithmetical formula including function symbol
for � of the index system�

The condition �r r ��� B�� is called the realization or realizability interpreta�

tion of ��� B�� If x�� ���� xn is an enumeration of free variables of B� then the
realization of �x�� ���� xn� B� is called the realization of B and we write r r B�
The conditions are de�ned so that if r r B holds� then r is an index of a total
recursive functions� Such functions are called guessing functions or guessing

realizers of the formula with context� It should be noted that the standard con�

cept of �realizers� do not correspond to guessing realizers but correspond to

their limits limt g�

The de�nition of realization is done by cases on B using an induction over
the complexity de�ned as the sum of the logical signs in A�� � � � � An and B�
In the de�nition� we intend r to be index of m � n � �	ary total recursive
guessing function g�x�� ���� xm� r�� ���� rn� t� of B� Thus� we may regard it as
a condition de�ning �guessing function of B�� We will list the de�nition of
realization below� We say context is realized when ri r �x�� � � � � xm� Ai� holds
for i  �� ���� n�

A���� Case �� B is an atomic formula�

r is an index of a total recursive function and �r�x�� ���� xm� r�� ���� rn� t� con	
verges whenever the context is realized�

A���� Case �� B is B� � B��

r is the standard pairing index of indices s� and s�� If the context is realized�
then s� r ��� B�� and s� r ��� B���

A���� Case �� B is B� � B��

r is the standard pairing index of indices s� and s�� If the context is realized�
then �s��x�� ���� xm� r�� ���� rn� t� converges� Let p be the limit value� If p  �
then s� r ��� B��� If p � � then s� r ��� B���

A���� Case �� B is B� � B��

r is an index of a total recursive function� We consider a new context ���

�x�� ���� xm� A�� ���� An� B�� r�� ���� rn� rn����
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If �� is realized� then �r�x�� ���� xm� r�� ���� rn� rn��� t� converges to a value b and
b r B��

A���� Case �� B is �x�C�

r is an index of a total recursive function� We consider a new context ���

�x�� ���� xm� x� A�� ���� An� r�� ���� rn��

If �� is realized� then �r�x�� ���� xm� x� r�� ���� rn� t� converges to a value b and
b r ���� C��

A���	 Case �� B is �x�C�

r is the standard pairing index of indices s� and s�� �r�x�� ���� xm� r�� ���� rn� t�
converges whenever the context is realized� s� r ��� C�t�x��� where t is the
numeral representing limt �s��x�� ���� xm� r�� ���� rn� t��

It is easy to see that a guessing realizer is always a total recursive function�
Similarly to the theorem � of ����� the soundness theorem holds� i�e�� if A
is provable in HA���

�	DNE� then a number p is e�ectively computable and
p r A� The partial recursive function �p represents a formal version of guessing
function of A in limit	BHK	interpretation�

Without loss of generality� we may assume guessing functions of �x�A�x� and
A � B are trivial� Namely� g�x� ��  g�x� t� for all t� Let us assume g be
a guessing function of �x�A�x�� limt g�x� t� converges to an index of guessing
function for A�x�� To realize A� we compute two nested limits limt �limt g�x�t��t��
It is equivalent to a single limit limt �g�x�t��t�� Let h be a recursive function
such that �h�x��t�  �g�x�t��t�� Then g� de�ned by g��x� t�  h�x� can replace
g�

The realizability given here is di�erent from the one given in ���� in two re	
spects� The realizability in ���� is based on an axiomatic recursion theory
BRFT� Here� acceptable programming systems are used instead� Since ac	
ceptable programming systems may have dynamic complexity measures� the
problem of limits of partial guessing functions in ���� does not arise� A limit
BRFT system whose guessing functions are restricted to total functions can be
de�ned for any BRFT with Blum�s dynamic complexity measure �c�f� Lemma
���� ������ Thus� we assumed guessing functions are total as usual�

The other di�erence is the points where limit are evaluated� As noted above�
guessing functions for implication and universal formulas could be trivial� This
is not so in ����� On the other hand� guessing realizer of �x�A was de�ned so
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that it includes the value of x� A guessing realizer g of �x��y�A�x� y� in this
paper� may return in the limit an index of a guessing function h of �y�A�x� y�
for input x� Thus evaluation of limit to retrieve y could be postponed till the
limit of h is evaluated� On the other hand� in ����� g was assumed to return a
natural number y itself instead of its guessing function h� Thus� g could not
avoid evaluation of limit and g could not be trivial in general�

Berardi introduced a semantics based on limit	natural numbers �
�� Limit	
natural numbers N� are �	ary guessing functions converging to natural num	
bers� From classical point of view� N� is isomorphic to the standard natu	
ral numbers N � However there is no recursive isomorphism form N� to N �
In this sense� they di�er� Berardi has developed constructive theory of non	
constructive functions using this trick� The guessing functions of formulas
with empty context can be regarded as Berardi�s limit	natural numbers� In
this respect� ours interpretation may be thought a non	standard semantics of
number theory with limit	numbers�
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