
Limit Computable Mathematics

and

Interactive Computation

Susumu Hayashi, Kobe University

September 17, 2001

Abstract

We are now investigating an "executable" fragment of classical
mathematics for testing formal proofs to make formal proof develop-
ments less laborious. Several theories of execution of full classical
proofs are known. In these theories, some kind of abstract values such
as continuations, are necessary. It makes them illegible from compu-
tational point of view, although they are mathematically interesting.
In contrast, we consider only a fragment of classical mathematics and
give a simple and natural "computational" contents without such ab-
stract values. The fragment appears to cover a rather large domain
of practical mathematics. The point is that codes associated to proof
by our method is not computable in Turing's sense, i.e., �0

1
, but \exe-

cutable" in the sense of Gold's theory of machine learning, i.e., �0
2
. I

will give a survey of this new executable mathematics LCM. I will also
discuss a possible framework of "interactive computation" emerged
from LCM research. It may serve a uni�ed framework for practical
scienti�c computing such as numerical analysis and problem solving in
computer science such as veri�cation via re�nements. Many materials
of this paper is complied from the manuscript [6].

1 Proof Animation: testing proofs

The formal development of proofs is becoming more and more practical
thanks to advancements of hardware and software. However, the task

1



is still very costly. There are several reasons why the task is so heavy.
One of them and probably most serious one is mismatches between
formalized notions and informal notions. There would not be ultimate
solution for this problem. However, we introduced a notion of Proof
Animation (PA) to make this problem less problematic [5]. In a sense,
PA is a contrapositive of the good old proofs as programs notion \if
a program is (extracted from) a proof checked, then it does not have
bugs". For PA, the objective is not correct programs but checked
proofs. Thus, we say \if a program extracted from a proof has a bug,
then the proof does have a bug". The reader may wonder why a formal
proof has a bug. Here proofs mean partial proofs under development
and so they may have bugs in subgoals.

Note that even a �nished and checked proof may have a bug. Proof
checking do not detect wrong formalizations. Formalizations them-
selves can be wrong. In Viper project, bugs were found in speci�ca-

tions rather than implementation, and they were found only through
conventional validation or testing methods (see [3]). In practice of
formal development of proofs, it is not very rare that everything is
proved but then one �nds the conclusion just proved is short for ac-
tual requirements.

No formal metrics of correctness of formalizations would exist.
Thus, quite often we do not know what are our real requirements
at the very beginning of project. They are found only through the
process re�ning our knowledge on the system under development. It
is desirable to �x such requirements as early as possible. However,
often they are found only in the very last stage of the project or even
after the project is �nished.

Formal proof developments (and formal software development) is
a kind of problem solving and thus it would be an inevitable nature
of the activity. Thus, we cannot and should not avoid some kind
of empirical means in formalization of proofs, since \correctness" of
speci�cations, de�nitions and goals are de�ned only through informal
criteria. The notion of \proof animation" or \testing proofs" [5] is an
example of such an informal means. The idea is �nding bugs in proofs
by testing programs associated to proofs.

In the talk, the method of proof animation will be illustrated by
logic puzzles in [5] and [6]. We will not get into the details here, but
point out that associated programs are actually useful to �nd bugs.

2



2 Limit Computable Mathematics

We can use Curry-Howard isomorphism to animate proofs as pointed
out in [5] and the demo in the talk illustrates. However, it is applica-
ble only to constructive proofs and many proofs are not constructive.
Thus, we need a method for animation (execution) of such classical
proofs. Since proof animation is a means to understand proofs through
computations, such proof execution methods or interpretation must
satis�es the following two criteria:

1. computational contents (programs) associated with proofs are
legible,

2. association between proofs and programs is legible.

We call a proof execution method with these criteria accountable.
Unfortunately, almost all proof execution methods for classical

logic are not accountable. Since there are many classical proofs, such
as proofs of Banach-Tarski paradox, in which we cannot �nd computa-
tional contents, there might not be truly accountable proof execution
methods for full classical mathematics. Then we should seek an al-
ternative approach. Find a fragment F of classical mathematics such
that proof execution for F is accountable and enough mathematics
can be done in F .

Limit Computable Mathematics (LCM) was introduced as a candi-
date of such a fragment. LCM is a fragment of classical mathematics

whose Brouwer-Heyting-Kolmogorov-Kleene-interpretation is realized

by limiting recursive functions rather than recursive functions. Since,
it is realized by limiting computable (limiting recursive) functions, it is
called Limit Computable Mathematics. LCM may have some di�erent
formulations. Already three approaches [7, 1, 2] have been proposed,
and there would be more. However, they are essentially the same
idea which can be illustrated by the following simple non-constructive
theorem.

Proposition 1 If f is a computable function on natural numbers,

then f has a minimum value, that is, 9x8y:f(x) � f(y) holds.

This theorem is not constructive since there is no recursive function
computing the answer y from f . However, we can always �nd the
correct answer for y in �nite time by a \computation." Imagine an
agent is trying to compute the answer. First, it guesses f(0) would be
the answer. However, if it encounters a smaller value f(i), it changes

3



mind and guesses f(i) would be the answer. It continues to try the
remaining inputs in the same way and never stop. Since the numbers
guessed are decreasing, it eventually encounter the right answer. After
then, it will never change its mind, since it has already learned the
right answer. However, it does not know when it got the right answer.

In the same vein, we can compute (identify) the consistency of
any formal system in the limit. First, you bet to the consistency and
say \the system is consistent", but you also start to check consistency
by inspecting the conclusions of all possible proofs. If you �nd a
conclusion is a contradiction, then you change your mind and say \I
got a second thought. It's contradictory.". No matter of consistency of
the system, you can say the right answer in a �nite time. If the system
is consistent, your �rst utterance is correct and you never change
the answer. If the system is not consistent, your second utterance is
correct and you never change what you said anymore. In both case,
you would utter the correct answer in �nite time. Of course, you never
know when you utter it.

This is the fundamental paradigm of computational learning theory
introduced by Gold [4]. All contemporary learning theory may be
regarded as descendants of this seminal work. In the terminology of
learning theory, the minimum value and consistency of formal systems
are said learned. We now wish to apply Gold's idea to logic and Proof
Animation by regarding the learning process as a kind of computation.

Kleene called a disjunctive statement A _ B is realized, if there
is an algorithm deciding whether A or B is correct.1 On the other
hand, it is said a function g(x; n) computes a value v in the limit, if
g(x; n) attains v for any n bigger than a number N . It is also said
the sequence g(x; 0); g(x; 1); g(x; 2); � � � converges to v and written as
v = limn g(x; n). If f(x) = limn g(x; n) holds for a recursive function
g, then the function f is called limiting recursive. These are the
fundamental notions of algorithmic learning theory by Gold [4].

From the examples above, it would be clear that the law of ex-
cluded middle (LEM) A _ :A for any �0

1
-statement A is realized in

Kleene's sense by a limiting recursive function. Thus, �0
1
-LEM is real-

izable by limiting recursive functions. We have shown in [7] that any
classical proof whose LEM is restricted to �0

1
-LEM and some other

related principles, such as �0
2
-double negation elimination, are realiz-

1This explanation is not correct, when A and B contains disjunctions or existential

quanti�ers. If they contains such logical signs, the algorithm must return realizers of A

and B as well.

4



able by limiting recursive functions and have pointed out that a large
portion of mathematics needs only such a restricted non-constructive
principles. A prime example was Hilbert's �nite basis theorem, which
was considered highly non-constructive by 19th century mathemati-
cians and was even called \not mathematics but theology" by P. Gor-
dan, a reputed algebraist of the time.

It is expected that LCM covers a very large part of practical math-
ematics for computer science and applied mathematics. (See [6] for
more detailed discussions.) Then, we will be able to make proof ani-
mation practical.

Note that proof animation by LCM resembles Shapiro's algorith-
mic debugging, which is also based on algorithmic learning theory.
By algorithmic debugging, Prolog programs are debugged. By LCM,
(partial) proofs are debugged. Since executions of Prolog is a kind of
proof building, it is likely that PA by LCM is related to algorithmic
debugging. However, exact relationship has not been known.

Besides this possible relation to algorithmic debugging, it has been
known that LCM is related to various research subjects including com-
putability theory over real numbers (computable analysis), computer
algebra, reverse mathematics, etc. (see [6]). We will briey discuss
them in the talk. This versatility would be implication of the univer-
sality of Gold's paradigm of limit computation. In the next section,
we will examine a notion of interactive computation which is a gener-
alization of Gold's paradigm.

3 Interactive computation

Limiting computation has been regarded as a paradigm of learning.
However, I propose to regard it or its extension as a paradigm of
practical computing. Practical computatings are often not completely
automatic but some kind of problem solvings are involved. Thus,
Gold's paradigm seems to �t better to the real world rather than
Turing's.

To begin with, we compare Gold's paradigm of limiting compu-
tation and Turing's paradigm of computation. Turing machine may
be regarded as a machine to keep computation forever. There is no
structural reason to exclude in�nitely long computations in the archi-
tecture of Turing machine. Finite automaton has a �nite tape and the
head runs in one direction. Thus, it inevitably stops. On the other

5



hand, Turing machine has an in�nite tape and the head moves to the
both sides or may stay on the current cell. Turing machine is more
natural to be conceived as a machine of non-stopping computation
as actual computers. In this respect, the notion of the �nal states of
Turing machine looks somehow arti�cial.

On the other hand, Gold's limiting recursive function is computed
by a non-stopping Turing machine. It is convenient to think a machine
with a separate output tape. Thus input is set on the main tape and it
mainly computes on it, then outputs on the output tape. The machine
never stop and does not need the notion of the �nal state. However, it
is said that the output c1c2 � � � cn is computed, when the output persists
on the output tape forever from a time on.

On these considerations, we may say as follows:

Turing: The machine runs to compute the answer forever. However,
the machine can decide when the answer is obtained. Thus, it
may stop when the machine get to know the answer is obtained.

Gold: The machine runs to compute the answer forever. The ma-
chine itself does not know when the correct answer is obtained,
but eventually it encounters to a correct answer and the output
becomes stationary. Thus, an �0

1
-oracle can decide when the

correct output is obtained.

These situation resembles practical scienti�c computations. Imag-
ine that we are computing gcd of two integers by a program. We can
program when the program should stop. However, for some scienti�c
computation, we cannot program when it should stop. Imagine we are
drawing a fractal image by a program. A fractal is an in�nite being
and we cannot complete the image in �nite time. Thus the program is
stopped by human on his/her decision, when he/she guesses the out-
put image is enough saturated. A computation of fractal is done by a
pair of non-stopping machine and an oracle telling when the machine
should stop.

By generalizing these situations, a notion of interactive computa-
tion is introduced. A system of interactive computation consists of

computer: a non-stopping computation mechanism, e.g. non-stopping
Turing Machine,

oracle: an oracle to decide when a require answer is obtained and
(may stop), e.g., the mechanism itself, human being, Amida-

6



Butsu, God,...2

Interactive computation captures the following \computation paradigms":

1. Turing computation:

computer: non-stopping Turing Machine

oracle: the computer

2. Gold computation:

computer: non-stopping Turing Machine

oracle: �0
1
-oracle

3. Fractal computation:

computer: non-stopping graphics program

oracle: human

4. Interactive proof protocol

computer: Prover

oracle: Veri�er

5. Numerical analysis (simple case): The software (or algorithm)
is �xed, but the precision is increased till a right approximated
answer is obtained.

computer: numerical analysis software

oracle: human

Note that the fractal computation and the last two examples are not
automatic computation but a sort of problem solving. In real scienti�c
computations, sometimes even software or algorithm must be changed
on the result of a run of the software. From theoretical point of view,
all possible changes are recursive enumerable and can be automatized.
However, it is not realistic. Thus, it is more natural to introduce non-
determinism. By allowing nondeterministic computer in interactive
computation, we can modelize problem solving such as re�nements in
formal methods and real scienti�c computations.

This paradigm is rather broad and, without restricting the classes
of computer and oracle, it would be an abstract nonsense. However,
the framework must be helpful to understand computations in real life
and the relationship of LCM to them.

2Butsu means Budda.

7



References

[1] Akama, Y.: Limiting Partial Combinatory Algebras: Towards In-
�nitary Lambda-calculi and Classical Logic, in Computer Science
Logic, 15th International Workshop, CSL 2001, L. Fribourg (Ed.),
Lecture Notes in Computer Science 2142, Springer, 2001.

[2] Berardi, S.: Classical logic as Limit Completion, -a constructive
model for non-recursive maps-, submitted, 2001

[3] Cohn, A.: The notion of proof in Hardware Veri�cation, Journal
of Automated Reasoning, 5 (1989) 127{140

[4] Gold, E. M.: Limiting Recursion, The Journal of Symbolic Logic,
30 (1965) 28{48

[5] Hayashi, S., Sumitomo, R. and Shii, K.: Towards Animation of
Proofs - Testing Proofs by Examples -, Theoretical Computer Sci-
ence, to appear, available at PA/LCM homepage.

[6] Hayashi S, and Nakata M.: Towards Limit Computable Mathe-
matics, invited talk at TYPES 2000 and submitted to its proceed-
ings, available at PA/LCM homepage, 2001.

[7] Nakata, M. and Hayashi, S.: Realizability Interpretation for Limit
Computable Mathematics, submitted, 2000

8


