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1 Introduction

The topic of this paper is Relative Constructivism.
We are concerned with classifying non-constructive
principles from the constructive viewpoint. We com-
pare, up to provability in Intuitionistic Arithmetic,
sub-classical principles like Markov’s Principle, (a
function-free version of) Weak Konig’s Lemma, Post’s
Theorem, Excluded Middle for simply Existential and
simply Universal statements, and many others. Our
motivations are rooted in the experience of one of the
authors with an extended program extraction and of
another author with bound extraction from classical
proofs.

Motivated by the approximation interpretation
in [1], one of the authors found that many non-
constructive proofs could be better understood as con-
structions of more general kind, as “limit construc-
tions” or “learning processes” [5, 7]. This allowed also
some kind of “execution”, even for results for which
no construction exists (in the more traditional sense
of the word). For instance, Hilbert finite basis the-
orem cannot produce a generator for a given ideal.
However, it may be interpreted as a process learning,
by trial-and-error, the generator of the ideal. If we
may interpret also non-constructive theorems as more
general kind of construction, the first question arising
is: how do we classify this new set of constructions?
When a mathematical principle is, from an intuition-
istic viewpoint, but a particular case of another one?
We will prove, for instance, that Weak Konig’s Lemma
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and Markov’s principle are mutually independent, and
that their conjunction is weaker than Excluded Mid-
dle, even just over simply Universal statements. And
the different strength of principles represent different
models of constructions. Proofs by weaker principles
carry more information to understand constructions
hidden in proofs. The executions of learning processes
extracted from proofs are expected to be useful for “de-
bugging of proofs” [6, 5]. Then it is better to prove
theorems by principles as weak as possible. The classi-
fication of the principles in the paper are expected use-
ful to determine by which principles we should prove
the target theorem.

An independent motivation for studying, from a
constructive viewpoint, the relations between semi-
classical principles was extraction of recursive bounds.
Consider any classical proof of some arithmetical state-
ment Va.Jy.Alz,y]. A bound for this statement is
a map f such that, for all x € N, Afz,y] for some
y < f(z). It is well-known that, in general, we cannot
extract out of the proof a recursive bound f, unless A
is purely existential. However, if a proof of a result of
classical mathematics only uses certain restricted clas-
sical principles such as comprehension for existential-
free formulas or (weak) Ko6nig’s lemma in an overall
intuitionistic context, then the extraction of a recur-
sive bound f for an arbitrary A is possible (see [11]). If
only weak Ko6nig’s lemma is used (but no non-recursive
comprehension) the intuitionistic context may even be
extended by the Markov’s principle. This was another
motivation for studying the relation, in an intuitionistic



context, between Konig’s lemma and Markov’s princi-
ple, and between their conjunction and Excluded Mid-
dle for Universal statements.

2 Semi-classical Principles

In this section, we introduce the semi-classical prin-
ciples and discuss on their motivations and formula-
tions. We investigate classical logical principles such
as the law of excluded middle restricted to arith-
metical fragments, e.g. the law of excluded middle
relativized to ¥° formulas. The restriction makes clas-
sical principles somehow more “effective” and provides
finer understanding of the “computational” nature of
classical principles. We will give motivation for the
semi-classical principles relating them to mathemati-
cal theorems and concurrent processing.

We work with a standard formulation of Heyt-
ing arithmetic HA, i.e., the equational axioms, defin-
ing equations for all primitive recursive functions,
S(z) = 0 DL, the induction axiom scheme, and
the intuitionistic first order logic. ~ Thus, PA =
HA +the law of exculuded middle, where PA stands for
Peano arithmetic.

2.1 Definitions of the principles

First we recall that X9-formula and II9-formula are
defined as follows. :

o Y0-formulais Qiz1. - .QrziP(z1,... ,zk).
o II0-formula is Q1z1.-+ .QrzrP(z1,. .. ,T8).

Here P is a quantifier-free formula. (Q; represents
3 for odd i and V for even i. V and 3 are 3 and
V, respectively. For example, a ¥9-formula is of the
form 3z;.Vxs. P(z1, z2) and a I19-formula is of the form
\V/Cﬂl.E'CUQ.P(HZl, .772)

Definition 2.1 (i) A I v II% -formula is of the form
C1VC; (C,Cy €TI?). (ii) A bounded 2 | -formula,
01;) a B -formula, is of the form 3z < y.C (C €
ity

We introduce semi-classical principles by relativiz-
ing classical logical principles to formula classes. Let
®, ¥ be sets of formulas of HA, then we define semi-
classical principles for @ as follows:

(3-DNE) =~ P> P (P € )
(-LEM) PV -P (P € )
(#-LLPO) ~(PAR) D> P"VR™ (P,R € ®)

(A(®,¥)-LEM) (P& R)DPV-P(Pc® Re¥)

P~ stands for “duals”. For example, (Vz.3y.z = y)~
is dz.Vy.—x = y. P7 is defined only for prenex normal
forms in this paper. Thus, we assume P and R in
LLPO scheme are prenex normal forms.

DNE stands for “double negation elimination”, and
LEM for “law of the excluded middle”. LLPO stands
for “lesser limited principles of omniscience”. There are
several different but provably equivalent formulations
of LLPO schemes for higher degrees. The current one,
which is due to Michael Toftdal, is temporarily chosen.

We will consider semi-classical principles only for
mathematically or computationally meaningful & and
V. The principles considered in this paper are
YY.DNE, II°-DNE, BX?-DNE, XV-LLPO, (II° v
I%)-DNE, and A(XY,112)-LEM). The principle
A(XY T1%)-LEM is normally denoted by A2-LEM.

Note that

($9-DNE) —— 3z. P D 3z. P (P € 1Y)

is the Markov principle for quantifier-free formulas. We
also call X°-LEM as n-Markov principle. The princi-
ples are often written in the following form:

(S0-LEM) 3z. PV —-3z.P (P €1°_,)

to make the important logical signs stand out, in this
case, the existential quantifier.

YY-LLPO is called (arithmetical) LLPO or LNOS,
and studied by Bishop school [4]. £°-LLPO is called
n-LLPO as well. BE)-DNE was considered in [19].

Many principles we considered immediately reduce
each other

Fact 2.2 (H% V H%)-DNE |_HA H%—DNE HA_“_HA
0 -DNE, Y0-LLPO Fya X2 ,-LEM, (II° v
II9)-DNE Fpa X0 -LEM

Since II2-DNE and X% ,-DNE are essentially the
same principle, we seldom consider IT°-DNE and con-
sider £2-DNE, instead.

These principles are formulated mainly for the
prenex normal forms. Since the prenex normal form re-
sult does not hold for the intuitionistic logic, the reader
will wonder if the formulation is enough for the intu-
itionistic logic. In the subsection 2.3, we will show
that the prenex normal forms are enough for our aim,
since our formulas have prenex normal forms under the
semi-classical principles we consider.

2.2 Interpreting the principles
If we restrict ourselves to degree 1 formulas, the

semi-classical principles we listed have an interpreta-
tion in term of mathematical results (provided we add



some form of comprehension or Choice, as we shall see).
Thus, the study of their relative strength, with respect
to HA configure itself also as an intuitionistic version
of Reverse Mathematics. Some results for theorems of
analysis in the vein have been given in [16] and other
results in analysis, algebra and logic are also known.

The same principles have, as we anticipate in the
introduction, an interpretation in term of “limit con-
struction” or learning processes (see [7]). We first list
non-constructive semi-classical principle. Then we con-
sider two non-intuitionistic principles which are still
”constructive” in some sense: they allow to extract
skolem functions from proofs V3-statements. They are
Markov’s principle and Post’s Theorem.

Y-LEM 3Jz.P V =32. P is equivalent, as we will
prove, to Excluded Middle for degree 1 formulas. From
a mathematical viewpoint, if we add a defining princi-
ple for functions, it is equivalent to Yasugi’s “Gauss’
staircase principle”: there exists a map taking a real
number z, and returning the largest integer n below z.
From the viewpoint of mathematics based on Learning,
instead, £9-LEM corresponds to the most general form
of learning, in which the number of times we are forced
to discard a hypothesis has no computable bound.

I9-LEM Vz.PV—Vz. P. This is a restricted version
of Excluded Middle for degree 1 formulas. If we add a
defining axiom for functions, it allows to define some
non-recursive maps with output 0 or 1 (hence having a
recursive bound). From the viewpoint of mathematics
based on Learning, it corresponds to a more restricted
form of learning, in which the number of times we are
forced to discard a hypothesis has some computable
bound.

YO-LLPO —(3z.P A 3x.R) D Vo.~P V Vz.~R. This
is the most important principle we consider in this pa-
per. It is equivalent to WKL, provided we add choice
axiom for simply universal formulas (from now on, to
be called II9-AC"). Large parts of mathematics can be
carried out in weak base systems plus WKL: Cauchy-
Peano, Hahn-Banach (for separable spaces), Brouwer
and Schauder’s fixed point theorems, attainment of
maximum of a continuous map on [0, 1], and so forth.
With respect to all other principle we consider, it has
a curious feature: it has a nice non-deterministic inter-
pretation, Lifschitz’s Realization Interpretation. The
non-determinism comes out of the fact that, if we as-
sume —(3x.P A z.R), we may deduce either Viz.—P,
or V.~ R, or both. In this last case, a Realization in-
terpretation of the principle may choose any of the two
possibilities. From the viewpoint of mathematics based

on Learning, it corresponds to an even more restricted
form of learning, in which the number of times we are
forced to discard a hypothesis has some computable
bound, and the we are learning a non-deterministic
map having a negatively decidable graph.

AY-LEM (3z.P & Vz.R) D Jx.P V =3x.P. This is
equivalent to the Recursive Comprehension Axiom un-
der Choice axiom for A{-predicates (from now on, to
be called A9-AC). It is also equivalent to formalization
Post’s Theorem of recursion theory: every positively
and negatively decidable set of integers is decidable. A
convincing learning interpretation for A}-LEM is still
missing.

YO-DNE ——3z.P D Jz. P. As we said, it is called
Markov’s principle. Fix any partial recursive map f,
and call f convergent in z, if it f terminates in a finite
number of steps for the input z. Call f divergent in z if
it terminates in no finite number of steps for the input
. Then Markov’s principle may be expressed as: if a
partial recursive map f is not divergent in x, then f is
convergent in . ! In Bishop’s constructive Analysis,
the same statement reads as: “if two recursive reals
are not equal, then they are apart”. Here equal means
that for all n € N, |z — y| < 27", while apart means
that for some n € N, |z —y| > 27"

2.3 A Prenex Normal Form Theorem

In this subsection, we justify the formulation of
semi-classical principles restricted to prenex formulas.
We will define formula classes Ey and Uy, which are
generalizations of the ¥9-formulas, II9-formulas, re-
spectively. They are intuitionistically equivalent to X9-
formulas, II2-formulas under appropriate semi-classical
principles. In the end, for example, I[I9-LEM and its
generalization U,-LEM are logically equivalent under
HA. Thus, our seemingly restricted formulation does
not loose the generality. Uy and Ej are defined by
alternations of sign quantifier occurrences. We define
some auxiliary notions for it.

Definition 2.3 We associate a sign + or — to each
occurrence of quantifiers in a formula A. (i) 3 of a pos-
itive (negative) subformula 3x.B has the sign + (—).
(i1) ¥ of a positive (negative) subformula Vx.B has the

sign — (+).

"Markov principle states the convergence of an algorithm
without giving any explicit recursive bound (say, a polynomial
or primitive recursive bound). As we pointed out, such recur-
sive bound exists provided we do not combine Markov’s principle
with a fragment of Excluded Middle larger than $¢-LLPO.




We count alternations of signs of nested quantifier
occurrences. To do so, we consider all sequences of
the nested quantifier occurrences starting from the out-
ermost occurrences and ending with the innermost oc-
currences. For ezample,

(FzVy.((Vz.x = 2) V (=VzVuNv.z > 2))) A (Va.x = a),

has three atomic formulas, and so it has three such
sequences: ‘Y7 for (% .V x .((Vz.x = z) V %)) A %,
‘QYVWV for (I V. (xV (-Vx ¥V V.2 > 2)))Ax, and
N7 for «xA(V*.x = a). We replace the occurrences with
their signs and have “4+——7", “4—+++" and “-7,
respectively. By replacing adjacent signs of the same
kind by a single sign, we have “+—7, “4—+7 and
“~7”. We call them the sign alternation paths of the
formula.

Definition 2.4 (U, Ei, P, and Fy) The degree of
a formula is the mazimum of the length of its sign alter-
nation paths. The class of degree k formulas is denoted
by Fi. A Up-formula is a formula of Fj, such that all
sign alternation paths of length k start with —. An
E-formula is a formula of Fy such that all sign alter-
nation paths with length k start with +. A Py-formula
is an Fy-formula not belonging to Uy or Ey either.

Note that Fy, Fo, Uy, and Py are the class of quantifier-
free formulas. Every formula with quantifier occur-
rences is classified into exactly one of E,, 11, U,+1, and
P, ;1 asin Figure 1. E, and U, are generalizations of
¥9 and I1%. Note that our definitions of I1Y and 2 are
not cumulative. If it is cumulative, Vo.z = y is a ¥3-
formula. But, we normally call it a I19-formula and do
not call it a ¥9-formula. Thus, we make the definitions
non-cumulative, and so the definitions of corresponding
U,, and FE,, are non-cumulative.

A Pj-formula (k > 0) is a propositional combination
of Up-formulas and FEj-formulas, but is itself neither

Figure 1. Formula classification

a single Up-formula nor a single Ej-formula. For ex-
ample, if P(z), Q(x) stand for atomic formulas, then
Vo.P(xz) V 32.Q(z) is a P-formula. Any P,-formula
(classically) represents a AY_ ,-predicate.

For a supersystem of HA, we say a formula D is
decidable in T, if T+ DV —D.

Fact 2.5 (i) Any quantifier-free formula is decidable
in HA, (ii) Boolean combinations of T-decidable for-
mulas are T-decidable.

Lemma 2.6 If the variable x does not occur in the
formula A, then the following formulas are provable in
intuitionistic predicate logic: (i) (AV —=A) D (Vz(AV
B) D AvVz.B). (ii) AVVx.B D Vz(AV B). (iii)
Jz(AoB) < AoJx. B, foro=V,A. (iv) Ve(AAB) &
AAVz.B. (v) DV-D D> ((D D> B) & (=DV B)), (vi)
(——CD>C)D((BDC) & (—mBDCO)).

Theorem 2.7 (Prenex Normal Form Theorem)
(i) If A € Uy, then we can compute a I19-formula
C such that (119 VII{)-DNE tua A & C, (i) If
A € Ey, then we can compute a 9-formula O such
that $9-DNE Fya A O.

Proof. The two assertions of the theorem are simulta-
neously proved by using a double induction on k£ and
the length of A. When £ = 0, A is atomic and the
theorem is trivial. We prove the case for k& > 0 by
assuming the theorem holds below k.

Case 1. A is Ag A Aq: Since Lemma 2.6 allows us to
move any quantifiers over the conjunction A, a prenex
normal form of A is computed in the same way as for
classical logic.

Case 2. A is AoV A1: We prove the assertion (i). By
(i) of the induction hypothesis, we have Vz;.0; & A;
for some O, O1 € ¥} |. (A; may not be in Uy, but
in a lower class such as Fj_;. Then, we insert some
dummy quantifiers to get C; from the prenex normal
form of A;.) We may assume x¢ Z x1. The formula

Vwo.le.(OO V 01) D —|—I(VC€0.—|—IOO V \V/Clﬁl.—!—lol)
is easily provable in the intuitionistic predicate calcu-
lus. Since (II2 VII?)-DNE Fya 2 -DNE,
\V/l‘o.\vll'l.(O[) \ 01) D) _'_'(\V/l'o.OO V \V/l'l.Ol)
is provable in HA + (119 v I19)-DNE. Applying (I19 v
I19)-DNE to the conclusion of this implication,
VZ‘O.VZ’L(OO \ 01) D Vx9.09 V Vz1.01

is provable in HA + (II9 v II9)-DNE. Note that the
reverse is provable in the intuitionistic predicate cal-
culus. Since Og V O; is an Ej_i-formula, it is equiv-
alent to a X9 | -formula under £ -DNE by the in-
duction hypothesis. Obviously, (II? vV II9)-DNE  Fpa



¥? ,-DNE. Thus, A is equivalent to a II{-formula in
HA under (I} Vv II9)-DNE.

We now prove (ii). Similarly as in the proof of (i), we

take Cy, Cy € H%71 such that Z%—DNE Fua dz.0C; &
A; (i=1,2). Then A is equivalent to Jx¢.3z1.(CoVCh)
in HA + Z9-DNE. By Fact 2.2, £)-DNE implies
(IT9_, VII)_,)-DNE. Thus, by the induction hypoth-
esis, the Uy_1-formula Cy vV C; is equivalent to a II9_, -
formula under X9-DNE. Since repeated existential
quantifiers can be combined into a single existential
quantifier, this ends the proof of Case 2.
Case 3. A is Ag D A1: We prove the assertion (i).
By the induction hypothesis, we may take Cp € TI2_,
and O; € 22_1 such that Zg—DNE Fua Ag < dx.0C)
and (I19 VII?)-DNE Fya Ay & Vz1.0;. Since the
double negations of DNE is intuitionistically provable,
Fua ——A4p & ——329.Cy. Note that =——0O; D O
is provable from (IIY v II})-DNE, since O; € X}_,.
Hence, (Hg \Y H%)—DNE Faua ——Vz1.01 D Vz1.0;
Thus, by (vi) of Lemma 2.6, 49 D A; and Jx¢.Co D
Vz1.01 are equivalent under (II{ Vv II7)-DNE. Since
A20.Co D V1.0 is equivalent to Vao.Va1.(Co D O)
in HA and Cy D Oy € Ej_1, the conclusion is easily
proved from the induction hypothesis.

We now prove the assertion (ii). Similarly as in (i),
there are Op € £9_, and C; € II)_| such that 4y D A;
and Vzq.09 D dx,.C; are equivalent under E%—DNE.
In HA, Vz¢.09 D Jz;.C; implies ——3xo.3z1.(09 D
C1), the double negations of which can be eliminated
by L2-DNE because of Og D C; € Uj—y. Thus,
Ap D Ay and Fxp.311.(0p D C}) are equivalent un-
der ©)-DNE. Thus, we can argue as in (i).

Case 4. A is Vx. Ay or Jdx. Ag: Obvious by the
induction hypothesis. a

Corollary 2.8 (i) Every Py-formula is decidable in
HA + $9-LEM. (ii) For every H € Py there ex-
ists some O € X0, and C € 1IIY,, such that
Y-LEM Fya H& 0 & C.

Corollary 2.9 (i) U,-LEM yadbya I-LEM, (ii)
Ep-LEM pypadbpa X0-LEM.

Theorem 2.10 The prenex normal form theorem is
optimal in the following sense: (i) there are A € Uy,
and B € 119 such that (119 VII?)-DNE tuya A & B
and A & B Fua (I VII9)-DNE, (ii) there are
A € Ey and B € 3 such that £9-DNE +ypn A& B
and A< B Fua X-DNE,

Proof. We prove for k = 1. The other cases are
similarly proved. Let T be Kleene’s T-predicate. (i)
Set A = Vyo.T(eo,z,y0) V Vy1.T(e1,z,y1) and B =
Yyo.Vy1.(T (eo, z,y0) V T(e1,z,y1)). (B is not really

S0-LEM

\ﬁg-LEM
29-DNE |
S9-LLPO <~ BYXJ-DNE
e ~(II9 v I19)-DNE
AY-LEM
|
SO-LEM
\ﬁ?-LEM
S0 DNE
SO LLPO <« BYXJ-DNE
e <~ (1% v I19)-DNE
AYLEM
}
$0-LEM = HA

Figure 2. The arithmetical hierarchy

a II9-formula, but is obviously equivalent to a IIY-
formula.) (ii) Set A = -—-3y.T(e,z,y) and B =
Jy.T (e, z,y). O

3 Hierarchy of semi-classical principles

In this section, we will determine the provable hi-
erarchy of the semi-classical principles in HA. Semi-
classical principles are compared w.r.t. the derivability
in HA. This approach resembles the Reverse Math-
ematics of mathematical logic [15], since we compare
logical principles w.r.t. provability in a formal system
HA. Strength of set construction principles are con-
sidered in the Reverse Mathematics for the aim of
the foundation of mathematics. We consider compu-
tational strength of logical principles for the practical
aims explained in the introduction.

Theorem 3.1 (Main Theorem) The following hold
for Figure 8. (i) For any finite k > 1, the ar-
rows (implications) in the figure are derivable in HA.
(ii) X9-LEM is derivable, if we assume the both of
I19-LEM and $2-DNE. (iii) When a principle A can-
not be reached from another principle B by following
the arrows, then A is not derivable from B in HA. For
ezample, IIY-LEM fya EY-LEM, and £{-DNE and
[9-LEM are mutually independent.



The positive parts are done by straightforward
logical calculations. The cases of EQ—DNE Faa
AYV-LEM, (IIY VII?)-DNE Fuya A%-LEM, and the
equivalence of X)-LLPO, BX) -DNE and (I} Vv
I19)-DNE are non-trivial.

We sketch a proof of (IIY VII))-DNE Fya AY-LEM
for k = 1,2. For k = 1, assume the equivalence
Vz.A & Jy.B, where A and B are atomic formu-
las. Then, we can easily deduce a contradiction from
—(Vz.AV Vy.—B). Thus, -~ (Vz.A V Vy.~B) holds. By
(M9 VII9)-DINE, we see Vz.AVVy.~B. By the assump-
tion, we see Jy.B V —~Jy.B.

Note that we used the fact =B is of degree 0 to
apply (IIY v II)-DNE. For the case k = 2, B is of
the form Vz.C. It is easy to see —=Vz.C' is equivalent to
J2.-C under (ITYVIIY)-DINE, since X{-LEM is derived
from (TI3 v II9)-DNE. Thus, we can apply the same
argument to the case of k = 2. The cases of higher
degrees are similar.

Y2-DNE Fpa AY-LEM are proved similarly. The
three principles related to LLPO are proved equiv-
alent by the help of the distributivity rule (II{ V
H%)—DNE FHA ‘v’mo.‘v’ml.(Oo \/01) & V.09 VVZ1.0¢
for 01,0, € 9% | proved in Case 2 of the proof of
Theorem 2.7. The distributivity rule is a candidate of
LLPO for the higher degrees.

The difficult parts are underivability results. How-
ever, some of the underivability results have straight-
forward proofs. For example, unprovability of
Y2-LLPO from ¥)-DNE is done by Kleene realizabil-
ity with A%-functions. For k = 1, ¥9-DNE is Markov’s
principle and is realized by the standard Kleene re-
alizability with A-functions, i.e., recursive functions.
Thus, if £9-LLPO is provable from Y-DNE in HA,
then it is also realizable. Take primitive recursive pred-
icates Qo and )y so that P = Jy.Qo(z,y) and R =
Jy.Q1(x, y) represent recursively non-separable disjoint
enumerably recursive predicates (Theorem II.2.5 [14]).
Then, we can easily built a recursive set separating
these two disjoint sets from any realizer of the instance
of ¥Y-LLPO. This is a contradiction. For k > 0,
we can use the same argument by replacing recursive
functions by A9-functions.

Note that from the underivability proved right
above, we can deduce the underivability of II}-LEM
from T9-DNE. Otherwise, L)-LLPO is derivable
from T9-DNE, since X0-LLPO is derivable from
[I9-LEM. Many underivability are derived from in this
way from other underivability results.

In the mnext three subsections, we will
sketch  three non-trivial unprovability results:
¥5-LEM /40 A7 -LEM, 11, -LEM Hha
9. -DNE, and X0, ,-LLPO /y, II2,,-LEM.

The three underivability results are proved by various
techniques of mathematical logic, such as a cut-free
theorem and various realizability interpretations. All
of the underivability results of the Main theorem
are derived from them and some derivability result.
For instance, from II% ,-LEM W, XU, ,-DNE
and M9, ,-LEM Fha AV -LEM we get
A} -LEM Iy, 27, -DNE.

3.1 X0-LEM {4 A%, -LEM

The underivability of A% ,,-LEM from £9-LEM is
proved by a proof theoretic analysis together with a
recursion theoretic argument. To prove the underiv-
ability, we introduce an infinitary extension infHA (™)
of HA.

In this subsection, we assume that HA is formulated
so that it has only successor symbol as its unique func-
tion symbol, but has predicate symbols for all primitive
recursive relations. See 1.3.6 of [17] for such a formula-
tion of HA. This is for technical simplicity to formulate
infHA(™),

Definition 3.2 (infHA™) The formulas of infHA(™
are the closed formulas of HA. The system of infHA (™)
is formulated as Gentzen’s L). The initial sequents are
the sequents only with atomic formulas that are valid
in the standard model N. The logical inference rules
of infHA™) are the ones of L) except V-right rule and
d-left rule, which are replaced with their infinitary ver-
sions (w-rules). A proof tree of infHA™ s an infini-
tary trees labelled with sequents with the following con-
ditions: (i) each node represents a correct inference
rule or an initial sequent, (ii) the characteristic func-
tion ¢ of the proof tree is a 0™ -computable function,
(iii) the labelled sequent for a node s is Y(s), given by
a 01" -computable psi.

Note that §(") is the n-th jump [14]. A §(™)-computable
function is a function recursive in §(™. Thus, infHA(®)
has recursively represented infinitary proofs trees. A
proof of infHA®) ig represented by the pair (¢,)
of P®)-computable functions ¢ and . By the stan-
dard cut-elimination procedure for infinitary proofs,
any proof (¢,) of infHA™ can be transformed into
a cut-free form (¢', ") again of infHA(™ . The transla-
tion is (™ -computable, i.e. identifying #(™)-functions
with their indexes, there is a partial recursive function
F such that (¢',¢") = F(¢,1). These facts are well-
known for the case that the proof trees are recursively
presented, that is, in the case of infHA(®) Tt is very
easy to check the same argument remains valid for the
general case, if one notices }(™-computable functions,



ie. AY  -functions, satisfy axioms of abstract recur-
sion theories.

Although infHA(™ has only intuitionistic inference
rules, it proves classical logical theorems.

Lemma 3.3 infHA(™ proves £°-LEM.

We sketch a proof for n = 1. Note that ¥9-LEM
must be a closed formula in this lemma, since inf HA(™
does not have open formulas. Thus, the correct for-
mulation of ¥Y-LEM is Vz.(Jy.P(z,y) V =Jy.P(z,y))
instead of Jy.P(x,y) V =3y.P(x,y). By means of the
first jump ((V), we can compute if Iy.P(z,y) is cor-
rect or not for each z. z is the numeral for the in-
teger . If 3y.P(z,y) is correct, we can ((°)-compute
y so that P(z,y) is provable in infHA(©), Thus, we
can ((®-compute an ianA(O)—prOOf of y.P(z,y). If
it is incorrect, we can ianA(O)—compute an infHA®)-
proof of the sequent P(z,y) = for any y. Thus,

we can ianA(O)—compute an ianA(O)—proof of the se-
quent = Vy.P(z,y). By these two facts, infHA(®)-
proof of Jy.P(z,y) V =3y.P(z,y) is PM-computable
from xz. Thus, Vz.(Jy.P(z,y) V =Jy.P(z,y)) is prov-
able in infHA™ . The higher cases are proved similarly.

Assume that X0-LEM  tya A2, ,-LEM. Since
all provable closed formulas of HA are again proved in
infHA(™ infHA™ proves A%, |-LEM by Lemma 3.3.
Note that we can 0(™-compute an infHA™ proof of
AY_ -LEM from the formula of A% ;-LEM. We will
deduce a contradiction from this fact.

Let X C N be any 0(™-computable set. By means
of some quantifier-free formulas P, in the language
of infHA™ | it is written as

X={i| N 3e. Pa,i)} = {i | N E Ve Q(,0)}. (1)

X is said to have ¢ € N as a 0" -characteristic inde,
if the characteristic function of X is a §(")-computable
function of the index c.

When we encode @("-computable sets by ((™)-
characteristic indexes, then the standard diagonaliza-
tion argument shows that the class X of all (-
computable sets is not §(™-effectively enumerable.

However, by assuming infHA (™) proves AY | -LEM,
we can construct a ((")-effective enumeration of the
class X'. The proof is by the following lemma, which
is proved by an analysis of cut-free forms of proofs of
(A; & A3) D Cy V Oy in infHA™,

Lemma 3.4 Suppose a formula (A1 & Ay) D C1 Vs
is inffHA"™ _provable. Then an infHA™ -proof of one of
the following formulas is 0™ -computable: (a) (A; <
Az) D (C, (b) (Al =4 Az) D (O, (C) (A1 =4 Az) D Ay,
(d) (A1 = Az) D As.

Assume infHA(™ proves the following A} -LEM:

Vz.((3z. P(z,2) & V. Q(z, 2))
D  Fz.P(z,z)V -3z Pz, 2)).

By the lemma introduced above, we can §(")-compute
from ¢ one of the following:

(3z. P(z,i) & Vz.Q(z,i)) D 3. P(x,i),
(Jz. P(z,i) © Vo.Q(z,i) D -3z P(z,i).

Since inFHA(™ is sound to the standard model of PA
and by the condition (1) on P and @) stated above, one
of 3z. P(z,i) and —3x. P(z,3) is true. In the former
case, i € X holds, and in the latter case, i ¢ X holds.
Thus, we can ((™-decide whether i € X or not. By
this fact, we can easily construct a total §(™-function
®(e,i) enumerating X’ such that (i) {i|®(e,i) = 0} is
a (™ -computable set, (ii) for any §(")-computable set
X, there is e such that X = {i| ®(e,i) = 0}.

The construction of ® is as follows: Since all
proofs of A% ;-LEM from £%-LEM in HA are 0(©)-
enumerable, we can ((®-enumerate ianA(")—proofs of
all (universally closed) instances of AY,,-LEM from
SO0-LEM. Since the proofs of S°-LEM of infHA™
are ((™-enumerable, we can §(")-enumerate proofs of
all A? \-LEM. Thus, from a coding e of predicates
P and @, we can 0("-compute a ianA(")—proof of the
corresponding A? ,-LEM. By the decision method
given above, we can ((™-decide if i € X. This ((™-
algorithm gives some ® enumerating (™) -computable
sets. Contradiction.

3.2 H%H'LEM Zha E?L+1-DNE

The proof of the unprovability ITI2-LEM g
YO_-DNE is based on the monotone modified realiz-
ability in [11]. For technical reasons, we give the inter-
pretation not for HA but for the extensional finite-type
arithmetic E-HA“(™ with (™ -oracles, which is an ex-
tensional variant E-HA® of intuitionistic arithmetic in
all finite types [17, Sect. 1.6.12]. We will use Greek
letters for variables, and letters z1,...,zg,y, z,... for
variables of type 0.

Definition 3.5 (E-HA“(W) An  extensional finite-
type arithmetic E-HA“ ("™ with §(")-oracles is defined
by induction on n. E-HA“(®) js E-HA“. E-HA“ ("D
is the extension of E-HA (™) with new function con-
stants fayp(a,,....en,y) Jor all quantifier-free formulas
P(zy,...,z,y) of E-HA“’("), where x1,...,21,y are
of type 0. The aziom

P(zy,...,25,y) D
P(mla"' >xk7f3yP(z1,...,zk,y)m1 xk)



is added for the new constant.

In the following we implicitly refer to the obvious em-
bedding of HA into E-HA®(®) (see e.g. [12], 1.6.9). We
consider the following principles:

E2 3@(N—>N)—>NV€N—>N_

[(I)(N—>N)—>N€N—>N =0& Vz.éx = 0]
AC VeI A&, m) D FpTTTVETA(E, f)

Since E-HA“(™ has constants and axioms for n-th
jump, we easily see the following lemma.

Lemma 3.6 Let O(xq,...,x;) be any X2 -formula in
the language of HA. Then there is a quantifier-free for-
mula R(zy,...,z) in the language of E-HA (") such
that E-HA® (™) proves O(xy,...,x;) & R(z1,...,7k).
The same result holds for 11O -formula C(x1,. .., x) in
the language of HA .

In E-HA“ (™ one easily defines the characteristic func-
tion of ¥¥-sentences in the language of HA. Together
with the use of E? this gives:

Theorem 3.7 E-HA“(") 4 E2 proves every instance
of I, -LEM in the language of HA.

Note that E-HA“'("™ is sound in the full type structure
S, which is the standard set theoretical model of higher
order functions. On the other hand, E-HA® is sound
in the substructure given by the Kleene’s S1-S9 com-
putable functionals in [9], [17, pp.162-163]. Further-
more, the new constants fsyp(z,,...z,y) Can be inter-
preted by functions recursive in the jump 0. Thus,
the following lemma holds.

Lemma 3.8 (Calculability) For any closed term t
k

——f
of E-HA®: (™) of the type 0 — (--- — (0 — 0)), ¢ repre-
sents a 0™ -computable function from N¥ to N in the
full structure S.

3.2.1 Monotone modified realizability inter-
pretation.

E-HA“ (™) 4+ AC'+ E? is sound w.r.t. the monotone mod-
ified realizability interpretation of [11]. The interpreta-
tion is a combination of Howard’s notion of majorizabil-
ity and Kreisel’s modified realizability interpretation.

Definition 3.9 (Majorizability) (W.A.  Howard,
cf. [17]) The majorizability relation “¢ maj, ¢” is
defined by induction on p as follows:

x majo x' & x>,
§major & & Vn,n'(n maj, n' O &n majr &n').

If & maj,, ¢ for each i € {1,...,n}, then we write
(fl,...,fn) maj (Cl:"'acn)'

Let 5 mr A be Kreisel’'s modified realizability inter-
pretation of A by the sequence of variables ( (see [17]
for the definition). Then the monotone modified realiz-
ability interpretation of a E-HA“*(™_formula A by the
sequence of terms 7 is

EIE t maj 5 A Vf(&?mr A(f))]

Theorem 3.10 E-HA“™ + AC + E? is sound with
the monotone modified realizability interpretation in
E-HA“ (™) 4 F2.

Proof. For n = 0 the theorem is proved in [11]. For
n > 0 one only has to observe that the new func-
tion constants can easily be majorized with the help
of the functional ®max(f, ) = max(f(0),..., f(z)) in
E-HA“ (™), O

This theorem means that if E-HA*(™ + AC + E?
proves a formula A(g), then there exists a sequence ¢
of closed E-HA** (™) _terms such that the monotone mod-
ified realizability interpretation of A by # is provable in
E-HA“ (™ 4 B2,

Theorem 3.11 There is a quantifier-free HA-formula
P(z,21,23,...,Zn41) for which £%_ -DNE

== Az Vae ... Qrpyr. P(z, 21,22, o, Tnt)
D 3.’L’1V.’IJ2 .. .Q.’L’n+1.P(Z,.’I}1,CEQ, .. .,.’L’n+1).

is not provable in E-HA“™ + AC + E2.

Proof. Let us prove for the case n = 1. The general case
is similarly proved. Take any HA-formula P so that the
predicate 3z, Vx2P(i, 1, x2) is not PV _recursive.

Assume that the £9 | -DNE of the theorem is prov-
able for this P. We will deduce a contradiction. By
Lemma 3.6, E-HAY(Y) 4+ AC + E? proves

Vo . P(z,21,22) < Ulz, 21)

for some quantifier-free U(z,z) € E-HA“()| Thus, by
the assumption, E-HA“ (") + AC + E? proves

= 3z.U(z,z) D Jx.U(z,z).

By Theorem 3.10, the monotone modified realizability
interpretation of this formula is provable in E-HA“*(") 4
E? for a closed E-HA“"("-term t. Thus, the following
is also provable in the system:

3¢t (t magjy ¢ A Vz. (~= 3.U(z,2) D U(z,glz))).



Thus, so does
Vz. 3z < tz. (—-—| Jx.U(z,z) D U(z,m)).
Thus, E-HA' (Y 4+ E2 proves
vz (33:. U(z,z) & (Fz < tz) U(z,w)).

In the full type structure S, the left-hand side
3z.U(z,z) is not §)-recursive. However, the right-
hand side (3= < t2)U(z,z) is §-recursive by Lemma
3.8. Contradiction! O

Corollary 3.12 (i) II2-LEM f-ya $2-DNE and (ii)
[I9-LEM f-ya X2-LEM for non-negative integer n.

Remark 3.13 As the proof of the previous corollary
shows, the underivability of £2-DNE from I12-LEM
over HA even holds over E-HA“'("™ plus any further
principles A which have a computable monotone mr-
interpretation, as e.g. AC, (E?) or even full compre-
hension for exist-free formulas in all types (see [11]).

3.3 X0 -LLPO V1%, ,-LEM

Theorem 3.14 ¥V -LLPO /s 1%, -LEM.

Proof. We verify only the case of n = 0. The proof
remains valid for the general case by replacing the re-
cursive functions by the A%-functions. We show that
the Lifschitz’ realizability interpretation [13] satisfies
YO-LLPO but not II9-LEM. Here, “a number z
Lifschitz-realizes a formula A” (z Ir A in symbol) is
defined in the same way as the recursive realizability
interpretation except that A is an existential quantifi-
cation or a disjunction. For example, x Ir Jy. A(y) is
defined by

Ve 0 A Yge Ve [ia(9) r A(ji(9) ]

where V,, is the set {n < j»(z) | ji(z) en 1}. See [18]
for details.

In order to show that the Lifschitz realizability in-
terpretation satisfies £-LLPO, it is sufficient to show
that the HA-provably equivalent BY9-DNE is realiz-
able. In [19, pp.810-811], van Oosten defined BX)-
negative formulas and proved that they are the “self-
realizing” formulas for the Lifschitz’ realizability inter-
pretation. Because BY3-DNE is a BX9-negative for-
mula, the Lifschitz realizability interpretation satisfies
BY9-DNE.

On the other hand, the Lifschitz’ realizability inter-
pretation [13] does not satisfy IIJ-LEM. As pointed
out in [13], a Lifschitz-realization of the unique ex-
istence F'z.A implies the existence of a recursive
function computing x. Thus, Lifschitz-realization of
Vy. T (z,z,y) V—-Vy.—-T(z,z,y) implies a solution of
the halting problem. Contradiction. d

There are two other proofs for the same unprov-
ability result. One is by the standard Kleene realiz-
ability but with realizers recursive in the model W of
the formal system WKLy for the weak Konig lemma
constructed in [15]. This one and the proof presented
above are the essentially same and their learning theo-
retic meaning are characterized by “Popperian game”
introduced in [7]. A Popperian game is a competition
of finite “refutable” theories, i.e., II%-propositions, and
embodies the computational aspects of the low basis
theorem in recursion theory. Many theorems in the
formal theory WKL, of [15], e.g., the completeness the-
orem of the classical predicate logic, can be proved in
HA” + WKL, and their computational contents can
be extracted as Popperian games. These facts strongly
suggest a strict relationship between mathematics us-
ing only semi-classical principles and Reverse Mathe-
matics in [15] (cf. [16]).

Another sharply different and proof theoretically
more sensible proof is by the monotone functional in-
terpretation introduced in [10]. A detailed proof for
n = 1 of actually much stronger results will be found
in Corollary 8.11 and the subsequent discussion of [12].

These things will be discussed with detailed proofs
in our forthcoming paper(s) on calibrations of mathe-
matical theorems by means of semi-classical principles.

4 Conclusion

We proved the existence of a hierarchy, from the in-
tuitionistic viewpoint, between relevant semi-classical
principles. In particular, we proved that Limited Prin-
ciple of Omniscience, and Markov’s principle (even
taken together), are but a proper part of Excluded
Middle for degree 1 formulas, or for simply universal
formulas. This means that a proof using only degree 1
Limited Principle Omniscience, or Markov’s Principle,
or both, works on strictly weaker assumptions than a
proof using Excluded Middle, say, for degree 1 formu-
las. This provides a theoretical background for a differ-
ence we did already known. In fact, if we use the two
former principles, we are able to gather concrete infor-
mation from a proof, like extraction of effective bounds,
or a simpler interpretation in term of learning. This is
something which still remains true for II{-LEM alone,
provided we drop Markov’s principle ([11], [12]), but



which definitively fails for X{-LEM.

A similar remark holds for our results on ”con-
structive” principles (principles which allow to ex-
tract skolem maps out of proofs of V3I-statements).
We proved that Post’s Theorem is not intuitionisti-
cally provable. Yet, Post’s Theorem is provable from
Markov’s principle. This means that there are results
of constructive mathematics which are not intuition-
istically provable, like Markov’s principle, yet which
are intuitionistically weaker than this latter. This fact
is somehow puzzling, and we still miss a convincing
interpretation for it. Remark that the nature of the
difference between Markov’s principle and intuition-
ism is, instead, something well-known. We have an
intuitive interpretation of Markov Principle in term of
blind search algorithm. Then any proof of a statement
A = Vz.3y.P(z,y) using Markov principle provides a
recursive f such that P(z, f(x)) for all z, but it does
not describe explicitly a bound for f. (Of course, some
information about bounds may still be extracted from
the proof of A using Proof Theory). Does some dif-
ference of this kind exist if we derive A from Post’s
Theorem?

We end with a conjecture, due to one author: there
are results in Constructive Analysis which are, from an
intuitionistic viewpoint, strictly between Post’s Theo-
rem and Markov’s principle. Maybe, there is an entire
hierarchy inside constructivism waiting to be discov-
ered, and, above all, understood.
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