
Testing Proofs by Examples

Susumu Hayashi1? and Ryosuke Sumitomo2

1 Department of Computer and Systems Engineering,
Faculty of Engineering, Kobe University,

shayashi@kobe-u.ac.jp

1-1 Rokko-dai, Nada, Kobe, Japan,
2 Graduate School of Science and Technology

Kobe University, 1-1 Rokko-dai, Nada, Kobe, Japan,
sumitomo@pascal.seg.kobe-u.ac.jp

Abstract. We will present the project of proof animation, which started
last April. The motivations, aims, and problems of the proof animation
will be presented. We will also make a demo of ProofWorks, a small
prototype tool for proof animation.

Proof animation means to execute formal proofs to �nd incorrectness in them.
A methodology of executing formal proofs as programs is known as \proofs as
programs" or \constructive programming." \Proofs as programs" is a means
to exclude incorrectness from programs by the aid of formal proof checking.
Although proof animation resembles proof as programs and in fact it is a con-
trapositive of proofs as programs, it seems to provide an entirely new area of
research of proof construction.

In spite of wide suspicions and criticisms, formal proof developments are
becoming a reality. We have already had some large formal proofs like Shanker's
proof of G�odel's incompleteness theorem and proof libraries of mathematics and
computer science are being built by some teams aided by advanced proof checkers
such as Coq, HOL, Mizar, etc.

However, construction of big formal proofs is still very costly. The construc-
tion of formal proofs are achieved only through dedicated labors by human be-
ings. Formal proof developments are much more time-consuming and so costly
activities than program developments.

Why is it so?
A reason would be lack of means of testing proofs. Testing programs by exam-

ples is less reliable than verifying programs formally. It is practically impossible
to exclude all bugs of complicated software only by testing. Veri�cation is supe-
rior to testing for achieving \pure-water correctness," a correctness at the degree
of purity of pure water.

However, testing is much easier and more e�cient to �nd 80% or 90% of bugs
in programs. Since the majority of softwares need correctness only at the degree

? Supported by No. 10480063, Monbusyo, Kaken-hi (the aid of Scienti�c Research,
The Ministry of Education)



of purity of tap water, the most standard way of debugging is still testing rather
than veri�cation. Furthermore, the majority of people seem to �nd that testing
programs is more enjoyable than veri�cation.

For software developments, we have two options. However, we have only
one option for formal proof developments. Obviously checking formal proofs
by formal inference rules corresponds to veri�cation. (In fact, the activity of
veri�cations is a \subset" of formal proofs by formal proof checking.) Thus, we
may set an equation

X

formal checking of proofs
=

testing programs

formal veri�cation of programs

A solution X would be a means to �nd errors in formal proofs quickly and easily,
although it cannot certify pure-water correctness.

By Curry-Howard isomorphism, a mathematical theory bridging functional
programs and proofs, the solution of this equation is

X = testing proofs by execution of proofs;

Since it resembles and shares aims with \animation of formal speci�cations" in
formal methods, we call it proof animation. We often call it \testing of proofs"
as well.

A plausible reaction to proof animation may be as follows:

How can bugs exist in formal proofs? Formally checked proofs must be
correct by de�nition!

Bugs can exist in completely formalized proofs, since correctness of formal-

ization cannot not be formally certi�ed. This is an issue noticed in the researches
of formal methods, e.g. Viper processor veri�cation project [1] and, even earlier,
by some logicians and philosophers, e.g., L. Wittgenstein and S. Kripke [3]!

We will discuss that this di�culty is a source of ine�ciency of formal proof
developments and proof animation may ease it. A proof animation tool Proof-
Works, �gure 1, is still under construction and case studies are yet to be per-
formed. Nonetheless, the experiences with proof-program developments in PX
projects [?] shows such a methodology can eliminate bugs of some kind of con-
structive proofs very quickly and easily.

In the talk, we will discuss the theoretical and technical problems to be solved
to apply proof animation to actual proof development.

We will also give demos of ProofWorks, if facilities are available. The cur-
rent version of ProofWorks is a JAVA applet proof checker. Figure 1 represents
ProofWorks running on a Web browser. Formal proofs under development is
represented in the left box by Mizar-like formal language. Clicking \Extract"
button, it extracts a computational content of the proof, which appears in the
right box. The computational content is pure functional programs in the current
version of ProofWorks. ProofWorks associates the proof text with program text.
Positioning a cursor in one of the boxes and clicking one of >> or << buttons,



Fig. 1. ProofWorks

it shows the corresponding places in the other box. Thus, by �nding a bug in a
program in the right box, ProofWorks can show the corresponding points of in
the proof in the left box, where a bug likely sits.

A full paper and other informations on proof animation will be available at

http://pascal.seg.kobe-u.ac.jp/~hayashi

References

1. Cohn, A.: The Notion of Proof in Hardware Veri�cation, Journal of Automated

Reasoning, Vol.5, 127-139, 1989.
2. Hayashi, S. and Nakano, H.: PX: A Computational Logic, The MIT Press, 1988
3. Kripke, S.:Wittgenstein on Rules and Private Language, Harvard University Press,

Cambridge, Massachusetts, 1982
4. Sumitomo, R.: ProofWorks: An Environment for Animation of Proofs, Master the-

sis, Graduate School of Science and Technology, Kobe University, 1997.


