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Turing machines

A function F :C NV — NV js called , if there
exists a Turing machine with one-way output tape which transfers
each input p € dom(F') into the corresponding output F(p).
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Any computable function F' :C N — NV js
continuous with respect to the Baire topology on N
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Computable functions

A of a set X is a surjective function
6 :C NN 5 X.

A function [ :C X=Y is called ,if
there exists a computable function ' :C N — N" such that
&' F(p)efd(p) for all p € dom(f0).

NN4F>NN
1) &’

X——F—Y

S

If 6,0 are admissible representations of topological
spaces X, Y, respectively, then there is a canonical representation
[0 =0 of C(X,Y):={f:X — Y : f continuous}.
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Computable metric spaces

A tuple (X, d, ) is called a ,if
1. d: X x X — R is a metric on X,
2. a: N — X is a sequence which is dense in X,

3. do(a x a):N? — R is a computable (double) sequence in R.

Let (X, d,«) be a computable metric space. The
dx :C NV — X of X is defined by
dx(p) := lim ap(i)

71— 00

for all p such that (ap(i));cn converges and d(ap(i), ap(j)) < 27
for all 7 > i (and undefined for all other input sequences).
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Kreitz-Weihrauch Representation Theorem

Let X,Y be computable metric spaces and let
f:C X — Y be a function. Then the following are equivalent:

1. f is continuous,

2. [ admits a continuous realizer F' :C NN — NN,

NN4F>NN

Can this theorem be generalized to Borel measurable
functions?
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Borel hierarchy

e 3(X) is the set of open subsets of X,

o IIV(X) is the set of closed subsets of X,

e 39(X) is the set of I, subsets of X,

o T19(X) is the set of Gis5 subsets of X, etc.

o AV(X):=3X0(X)NIIL(X).
=9 m?
=4 I
=5 11
=5 I
=9 9
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Representations of Borel classes

Let (X, d,«) be a separable metric space. We define
representations dxo () of 3 (X), drpo () of I} (X) and da0 (x) of
AV(X) for k > 1 as follows:

¢ 52‘1]()()(]?) = U B(a(i), 7),

(4,5) €range(p)

i 5Hg(x)(27) =X\ 522(}()(?)7

[
522

+1()<)<po,2?1, ) 1= /L,L:JO 5ng(X)(Pz‘),

. 5Ag(x)<p> q) = 522(}()(29) L= 522(}()(11) = 51‘12(){)((]),

for all p, p;,q € N,
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Effective closure properties of Borel classes

Proposition 10 Let X,Y be computable metric spaces. The
following operations are computable for any k > 1:

1. 29 > %90

D, B = I, ) — 30 T = TI) |, A v A (injection)

k417 k417 k+1°

=) - 110, I — 39, A A°:= X \ A (complement)

) x 20 - =) 9 x ) — 109, (A, B) — AU B (union)

2 x 20— =0 119 x I — 11V, (A, B) — AN B (intersection)
(ENON — 39, (An)nen — U An (countable union)

(DN — 119, (An)pen — oy An (countable intersection)
(X)) x BUY) — BUX xY), (A, B) — A x B (product)

(I (XN — T (X)), (An)pen +— x52 A, (countable product)

© © N O o &K~ W D

TO(X xN) - 29(X), A— {x € X : (In)(xz,n) € A} (countable projection
k k

~
S

X XY)xY — BUX), (Ay) — Ay :={z € X : (z,y) € A} (section)
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Borel measurable operations

Definition 11 Let X,Y be separable metric spaces. A multi-valued
operation f: X — Y is called

o 3V Jf fTHU) € BY(X) for any U € B0(Y),
o DI or 3 , if the map
SR Y = Z(X), U fTH(U)

is computable.

Definition 12 Let X, Y be separable metric spaces. We define
representations dso (x -y of (X =Y) by

Ixo(x=y)(P) = [ 1 = [bx0v) — Is0(x))(p) = Z0(f 1)

forall pe N, f: X =V and k > 1. Let 522()(%” denote the
restriction to X0 (X — V).
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Effective closure properties of Borel measurable operations

Let W, X.Y and Z be computable metric spaces.
The following operations are computable for all n, k > 1:

1. 2%(3/ = 7Z) X Eg(X —-Y)— 2?1+k—1(X =27),(g,f)—gof
(composition)

2 30X =2Y)xW(X =22) 20X Y XZ),(f,9) — (z— f(z)*xg(z))
(juxtaposition)

3XVX=Y)xZW =2) > (X xW =Y x2),(f,9)— fXg
(product)

20X = YY) = BYU(X xN=Y), f+— f (evaluation)

X xN=Y) = 20X = YY), f [f] (transposition)

20X = Y) — Z0(XN = YN, f e fY (exponentiation)

SUX xN=Y) = 30X =Y f (n— (2 f(z,n))) (sequencing)

EQ(X = Y)N - Eg(X x N = Y): (fn)nEN = ((337?7,) = fn(x))
(de-sequencing)

© N O &0 A
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Composition

Forall U € 39(Z) and A; € TI° (V) with

n—1

gL (U) = U, A; we obtain in case n > 1
L (go f)~H(U) = f~1g~H(U),
2. f7HUZ0A) = Uy £ (A,
3. f7HA) = X\ FHY N\ A).

Since [~ (V' \ A;) € B0, ,(X) we obtain
(go f)~"U) =UiZy fH(Ai) € 29L+k5—1(X)' U

Let X,Y and Z be computable metric spaces and
nkeN. If f: X —Y is%) —computable and g : Y — Z is
30, ,—computable, then go [ is X, —computable.

(In case of n. = 1 the same holds for multi-valued f : X == Y).
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Uniform convergence

Let X,Y be computable metric spaces and k > 1.
The following operation is computable:

Lim:C Z9(X = V)N - 29X - V),
(fn)nEN — (I‘ = {11mn~>oo Yn  Yn S fn('r)})v

defined for all sequences (f,,),cn of 3\ —measurable multi-valued
functions f, : X =Y which fulfill d(y;,y,;) <27 for all z € X and

i > j wherey, € f,(x) and any such sequence (y,,).cn Is convergent.

Let XY be computable metric spaces and k > 1. If
(fn)nen is a computable and pointwise convergent sequence of
3.0 —computable functions f, : X — Y such that additionally
d(fi(z), [;(x)) <277 forall x € X and i > j, then the limit function
f:X — Y is ¥)—computable as well.
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Representation Theorem

Let X,Y be computable metric spaces, k > 1 and let
f X — Y be a total function. Then the following are equivalent:

1. [ is (effectively) 3¢ —measurable,

2. f admits an (effectively) 3\ —measurable realizer F :C N — N'

NN4F>NN
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Proof of 1. = 2.

Given a Eg—measurable f, we can effectively find a
3)—measurable selector F' of the composition
Ay o fodx :dom(dx) == Y by the effective
Kuratowski-Ryll-Nardzewski Selection Theorem.

F

NN————>NN
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Effective Kuratowski-Ryll-Nardzewski Selection Theorem

Let X,Y be computable metric spaces and let Y be
complete and k > 2. There is a computable operation
S:YUX =Y) = 2)(X —Y) such that f(x) € F(x) for any
fESWF)FeX(X=Y)andr € X.

Given a X)—measurable operation /' : X = Y we construct a

sequence of X! —measurable mappings f,, : X — Y which fulfill

dF(T)(fn(JZ)) < 2—71,’
d(f”(x)7frz—1(.”l,‘)) < on

for any n € N and we will apply the uniform convergence closure

scheme to this sequence. O
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Proof idea for 2. = 1.

Use the identity f = 0y o Flo Ax.

NN NN

AX (SX 5Y

X——FY

f

This proof idea only works in case of £ = 1! The idea can be extended
to the case k = 2 if dx is replaced by some equivalent representation
with very well-behaved preimages (Schroder’s representation).

Vasco Brattka Theoretische Informatik | - FernUniversitat in Hagen 17

Schroder’s representation

Let (X, d,«) be a separable metric space. Define
ox :CNY — X by 6x(p) =« if and only if p € {0,1}"' and

(Vi,j € N) p(i,j) =0 = d(z,a(i)) <277
| pli,j) =1 = d(z,ai)) > 2771

for all x € X and p € N.

Let X be a computable metric space. Then:
1. axEC (Sx.
Rx Ko (X) — Ko (NY), K +— ' (K) is computable.

‘T(NY) — T'(X), A — Gx(A) is computable for T' € {1}, 39},

A LN
k=4
>

Ax : X = Nz 5" {z} is strongly 39-computable.
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Effective Saint Raymond Section Theorem

Let X be a computable metric space and let
D :=dom(dx). Then there is a computable operation
S:3(D - NV = 2Y(X — N x 29X — NY) for any k > 2
such that 6x o s(z) = x and g = F o s for all ) -measurable
functions ' : D — N" and (s,g) € S(F).

NN NN

S (SX 9

X

The proof can be done by induction on k. The case k = 2
follows from the effective Bhattacharya-Srivastava Selection Theorem.
The induction step follows with the help of the Completeness
Theorem. O
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Effective Bhattacharya-Srivastava Selection Theorem

Let X,Y be computable metric spaces. A
multi-valued operation ' :C X — Y is called
>0 or 9 , if there exists a
computable operation @ : I1{(V) = 2?(X) such that
F~1(A) = Bndom(F) for any A € TI{(Y) and B € ®(A).

Let X, W, 7 be computable metric spaces, let W be
complete with recursive open balls and let k > 2. For any closed
valued strongly 3\ —measurable A : X = W and any given
39-measurable function F':C W — Z with range(A) C dom(F) we
can effectively find a 3\ —measurable function s : X — W such that
s(z) € A(x) forany x € X and F os: X — Z is ¥ -measurable.
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Some facts on the proof

e The classical proof is based on a variant of a Souslin scheme.
e This construction is essentially constructive.

e Certain ineffective choices of points in the classical proof can be
eliminated using multi-valued operations and the uniform limit

closure scheme.

e Thus, instead of choosing certain points (which is not
constructive) we can compute on all possible different points in
parallel (which turns out to be constructive).
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Reducibility of functions

Let X,Y, U,V be computable metric spaces and
consider functions f:C X — Y and ¢ :C U — V. We say that

o fis to g, for short f<; g, if there are continuous
functions A :C X xV — Y and B :C X — U such that

f(z) = A(z,g 0 B(x))
for all z € dom(f),

o [is to g, for short f<. g, if there are
computable A, B as above.

e The corresponding equivalences are denoted by =; and =. .

The following holds for all k > 1:
1. f<ig and g is 3\ —measurable = [ is 3\ —measurable,

2. [<.g and g is ¥\—computable = [ is 3)-computable.
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Completeness Theorem for Baire space

For any k € N we define C), : N — NV by

0 if (Ing)(Vng—1)...p{n,n1,...,nK) #0

1 otherwise

Cr(p)(n) :=

for all p € N" and n € N.

Let k € N. For any function F :C N — N" we obtain:
1. F<, G, <= F is %) —measurable,
2. F<.Cp <= F'is 22+1—computab/e.

Employ the Tarski-Kuratowski Normal Form in the appropriate
way. O
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Realizer reducibility

Let X,Y, U,V be computable metric spaces and
consider functions f: X — Y and g : U — V. We define

fZtg: = fox<igdy

and we say that f is to g, if this holds.
Analogously, we define f=. ¢ with <. instead of <;. The
corresponding equivalences ~; and ~. are defined
straightforwardly.

Let X,Y U,V be computable metric spaces and
consider functions f : X — Y and g : U — V. Then the following
holds for all k > 1:

1. f=ig and g is 3\ —measurable = [ is 3\ —measurable,

2. f=.g and g is ¥ —computable = [ is 3)—computable.
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Characterization of realizer reducibility

Let X, Y, U,V be computable metric spaces, let F be
a set of functions F': X — Y and let § be a set of functions
G :U — V. We define
F<tG <= (3A, B computable)(VG € G)(IF € F)
(Vz € dom(F)) F(z) = A(x, GB(x)),

where A :C X xV — Y and B :C X — U. Analogously, one can
define <. with computable A, B.

Let X,Y U,V be computable metric spaces and let
f: X —=Y andg:U — V be functions. Then

f2cg <= {F:FlF f}<.{G: G} g}.

An analogous statement holds with respect to <; and <; .
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Completeness Theorem for realizer reducibility

Let X,Y be computable metric spaces and let k € N.
For any function f : X — Y we obtain:

1. [=Cy <= [ is X}, ,—measurable,

2. [2.Cy <= [isX) .  —computable.

We consider the computable case (2), the topological case (1) can be
proved analogously. Let f be 22+1—computab|e. Then by the Representation
Theorem f admits a 22+1—computable realizer F' and hence I'<. C}, by the
Completeness Theorem. Since Jy is computable and 5§ admits a computable right
inverse, it follows fdx = 0y F'<¢ Ckég and thus f<¢ C}\.. Now let, on the other
hand, f=. C}y. Since C}, is 22+1—computab|e by the Completeness Theorem, it

follows that f is 32}, | —computable. O

Let X, Y be computable metric spaces, let
f X — Y be a function and £ € N. Then f is called
22+1 ,if fre O
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Lower bounds for unbounded closed linear operators

Let X,Y be computable Banach spaces and let
f:C X — Y be a closed linear and unbounded operator. Let (e,,),cn
be a computable sequence in dom( f) whose linear span is dense in X
and let f(e,)necn be computable in' Y. Then C<. f.

This generalizes The First Main Theorem of Pour-El and Richards.
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Arithmetic complexity of points

Let X be a computable metric space and let = € X.
Then x is called AY , if there is a A”—computable
p € N such that = = dx (p).

If (X,d,«) is a computable metric space such that
the equivalence problem for balls

{(m, k,i,j) € N: B(a(m),i) = B(a(k), j)}
is r.e., then we obtain for any point x € X andn > 1:

x is A2 —computable <= {(m,i) € N:x € B(a(m),i)} € ¥°.
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Invariance Theorem

Let X,Y be computable metric spaces.

o If [: X — Y is X)—computable, then it maps A —computable
inputs v € X to A?th,_l—computable outputs f(x) €Y for all
nk>1.

o If [ is even 3V —complete and k > 2, then there is some
AY —computable input = € X for any n > 1 which is mapped to
some AV, —computable output f(x) € Y which is not
AV . _,—computable.
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Completeness of the limit

Let X be a computable metric space and let
c:={(2n)neny € XV : (zp)nen € XV converges} denote the
computable metric subspace of X". The ordinary limit map

lim:c— X, (zp)neny — lim z,
o0

n—

is ¥9—computable and it is even 39—complete, if there is a
computable embedding 1 : {0, 1} < X.

On the one hand, 9—computability follows from

lim ™ (B(z,r)) = (U X" x B(z,r — 2_”)N> Nce XY (c)

n=0

and on the other hand, Eg—completeness follows from

C1<C lim{(]?l}m <c th .
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Completeness of differentiation

Let C'™V[0,1] be the computable metric subspace of
C|0, 1] which contains the continuously differentiable functions
f:10,1] — R. The operator of differentiation

d:CcM[0,1] — C[0,1], f — [
is 39—complete.
d is a linear closed an unbounded operator which is

computable on the dense sequence of rational polynomials. Hence,
(1<, d. On the other hand, we obtain

fla+ (1 —a)2") = flx —a2")

n— 00 2—n

for all f € C™V[0,1] and 2 € [0, 1]. Thus, d can be obtained as a limit
of a pointwise convergent sequence of 3!—computable functions and is
therefore 39—computable. O
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Effective Banach-Hausdorff-Lebesgue Theorem

Let X and Y be computable metric spaces and let
k > 1. There is a computable operation

Al (X —-Y) =X =YY

such that limoL = [ forall f € 3) (X —Y) and L € A(f).

Let X and Y be computable metric spaces and let
k> 2. Then for any 3, —computable function f : X — Y there is a
computable sequence (f,),cn of 3\ —computable functions such that
[ =1lim, o fn. For X = N" this holds true in case k = 1 as well.
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