Effective Borel Measurability and Reducibility of Functions

Vasco Brattka

Theoretische Informatik I FernUniversität in Hagen Germany

Kyoto, Japan, October 2003

Contents

- 1. Introduction
- 2. Computable functions and computable metric spaces
- 3. The Borel hierarchy and Borel measurable functions
- 4. The Representation Theorem
- 5. Some effective selection and section theorems
- 6. Reducibility of functions and the Completeness Theorem
- 7. Arithmetic complexity of points and the Invariance Theorem
- 8. Limits and the effective Banach-Hausdorff-Lebesgue Theorem

Definition 1 A function $F : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is called *computable*, if there exists a Turing machine with one-way output tape which transfers each input $p \in \text{dom}(F)$ into the corresponding output F(p).

Proposition 2 Any computable function $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is continuous with respect to the Baire topology on $\mathbb{N}^{\mathbb{N}}$.

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

- 3

Computable functions

Definition 3 A *representation* of a set X is a surjective function $\delta:\subseteq\mathbb{N}^\mathbb{N}\to X$.

Definition 4 A function $f:\subseteq X \rightrightarrows Y$ is called (δ, δ') -computable, if there exists a computable function $F:\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that $\delta' F(p) \in f \delta(p)$ for all $p \in \text{dom}(f\delta)$.

Definition 5 If δ, δ' are admissible representations of topological spaces X, Y, respectively, then there is a canonical representation $[\delta \to \delta']$ of $\mathcal{C}(X,Y) := \{f: X \to Y: f \text{ continuous}\}.$

Definition 6 A tuple (X, d, α) is called a *computable metric space*, if

- 1. $d: X \times X \to \mathbb{R}$ is a metric on X,
- 2. $\alpha : \mathbb{N} \to X$ is a sequence which is dense in X,
- 3. $d \circ (\alpha \times \alpha) : \mathbb{N}^2 \to \mathbb{R}$ is a computable (double) sequence in \mathbb{R} .

Definition 7 Let (X, d, α) be a computable metric space. The Cauchy representation $\delta_X :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ of X is defined by

$$\delta_X(p) := \lim_{i \to \infty} \alpha p(i)$$

for all p such that $(\alpha p(i))_{i \in \mathbb{N}}$ converges and $d(\alpha p(i), \alpha p(j)) < 2^{-i}$ for all j > i (and undefined for all other input sequences).

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

Kreitz-Weihrauch Representation Theorem

Theorem 8 Let X, Y be computable metric spaces and let $f :\subseteq X \to Y$ be a function. Then the following are equivalent:

- 1. f is continuous,
- 2. f admits a continuous realizer $F : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$.

Question: Can this theorem be generalized to Borel measurable functions?

- $\Sigma_1^0(X)$ is the set of open subsets of X,
- $\Pi_1^0(X)$ is the set of closed subsets of X,
- $\Sigma_2^0(X)$ is the set of F_{σ} subsets of X,
- $\Pi_2^0(X)$ is the set of G_δ subsets of X, etc.
- $\bullet \ \Delta_k^0(X) := \Sigma_k^0(X) \cap \Pi_k^0(X).$

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

4

Representations of Borel classes

Definition 9 Let (X, d, α) be a separable metric space. We define representations $\delta_{\mathbf{\Sigma}_k^0(X)}$ of $\mathbf{\Sigma}_k^0(X)$, $\delta_{\mathbf{\Pi}_k^0(X)}$ of $\mathbf{\Pi}_k^0(X)$ and $\delta_{\mathbf{\Delta}_k^0(X)}$ of $\mathbf{\Delta}_k^0(X)$ for $k \geq 1$ as follows:

- $\delta_{\mathbf{\Sigma}_1^0(X)}(p) := \bigcup_{\langle i,j \rangle \in \text{range}(p)} B(\alpha(i), \overline{j}),$
- $\delta_{\mathbf{\Pi}_k^0(X)}(p) := X \setminus \delta_{\mathbf{\Sigma}_k^0(X)}(p),$
- $\bullet \ \delta_{\boldsymbol{\Sigma}_{k+1}^0(X)}\langle p_0, p_1, ... \rangle := \bigcup_{i=0}^{\infty} \delta_{\boldsymbol{\Pi}_k^0(X)}(p_i),$
- $\bullet \ \delta_{\mathbf{\Delta}_k^0(X)}\langle p,q\rangle = \delta_{\mathbf{\Sigma}_k^0(X)}(p) :\iff \delta_{\mathbf{\Sigma}_k^0(X)}(p) = \delta_{\mathbf{\Pi}_k^0(X)}(q),$

for all $p, p_i, q \in \mathbb{N}^{\mathbb{N}}$.

Proposition 10 Let X, Y be computable metric spaces. The following operations are computable for any $k \ge 1$:

1.
$$\Sigma_k^0 \hookrightarrow \Sigma_{k+1}^0$$
, $\Sigma_k^0 \hookrightarrow \Pi_{k+1}^0$, $\Pi_k^0 \hookrightarrow \Sigma_{k+1}^0$, $\Pi_k^0 \hookrightarrow \Pi_{k+1}^0$, $A \mapsto A$ (injection)

2.
$$\Sigma_k^0 o \Pi_k^0$$
, $\Pi_k^0 o \Sigma_k^0$, $A \mapsto A^{\mathrm{c}} := X \setminus A$ (complement)

3.
$$\Sigma_k^0 \times \Sigma_k^0 \to \Sigma_k^0$$
, $\Pi_k^0 \times \Pi_k^0 \to \Pi_k^0$, $(A,B) \mapsto A \cup B$ (union)

4.
$$\Sigma_k^0 \times \Sigma_k^0 \to \Sigma_k^0$$
, $\Pi_k^0 \times \Pi_k^0 \to \Pi_k^0$, $(A,B) \mapsto A \cap B$ (intersection)

5.
$$(\Sigma_k^0)^{\mathbb{N}} o \Sigma_k^0$$
, $(A_n)_{n \in \mathbb{N}} \mapsto \bigcup_{n=0}^{\infty} A_n$ (countable union)

6.
$$(\Pi_k^0)^{\mathbb{N}} \to \Pi_k^0$$
, $(A_n)_{n \in \mathbb{N}} \mapsto \bigcap_{n=0}^{\infty} A_n$ (countable intersection)

7.
$$\Sigma_k^0(X) \times \Sigma_k^0(Y) \to \Sigma_k^0(X \times Y)$$
, $(A, B) \mapsto A \times B$ (product)

8.
$$(\Pi_k^0(X))^{\mathbb{N}} \to \Pi_k^0(X^{\mathbb{N}})$$
, $(A_n)_{n \in \mathbb{N}} \mapsto \times_{n=0}^{\infty} A_n$ (countable product)

9.
$$\Sigma_k^0(X \times \mathbb{N}) \to \Sigma_k^0(X)$$
, $A \mapsto \{x \in X : (\exists n)(x,n) \in A\}$ (countable projection)

10.
$$\Sigma_k^0(X \times Y) \times Y \to \Sigma_k^0(X)$$
, $(A, y) \mapsto A_y := \{x \in X : (x, y) \in A\}$ (section)

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

c

Borel measurable operations

Definition 11 Let X, Y be separable metric spaces. A multi-valued operation $f: X \rightrightarrows Y$ is called

- Σ_k^0 -measurable, if $f^{-1}(U) \in \Sigma_k^0(X)$ for any $U \in \Sigma_1^0(Y)$,
- effectively Σ_k^0 -measurable or Σ_k^0 -computable, if the map

$$\boldsymbol{\Sigma}_k^0(f^{-1}):\boldsymbol{\Sigma}_1^0(Y)\to\boldsymbol{\Sigma}_k^0(X),U\mapsto f^{-1}(U)$$

is computable.

Definition 12 Let X, Y be separable metric spaces. We define representations $\delta_{\Sigma_k^0(X \rightrightarrows Y)}$ of $\Sigma_k^0(X \rightrightarrows Y)$ by

$$\delta_{\mathbf{\Sigma}_{k}^{0}(X\rightrightarrows Y)}(p)=f:\iff [\delta_{\mathbf{\Sigma}_{1}^{0}(Y)}\to\delta_{\mathbf{\Sigma}_{k}^{0}(X)}](p)=\mathbf{\Sigma}_{k}^{0}(f^{-1})$$

for all $p \in \mathbb{N}^{\mathbb{N}}$, $f: X \rightrightarrows Y$ and $k \geq 1$. Let $\delta_{\Sigma_k^0(X \to Y)}$ denote the restriction to $\Sigma_k^0(X \to Y)$.

Proposition 13 Let W, X, Y and Z be computable metric spaces. The following operations are computable for all $n, k \geq 1$:

- 1. $\Sigma_n^0(Y \rightrightarrows Z) \times \Sigma_k^0(X \to Y) \to \Sigma_{n+k-1}^0(X \rightrightarrows Z), (g, f) \mapsto g \circ f$ (composition)
- 2. $\Sigma_k^0(X \rightrightarrows Y) \times \Sigma_k^0(X \rightrightarrows Z) \to \Sigma_k^0(X \rightrightarrows Y \times Z), (f,g) \mapsto (x \mapsto f(x) \times g(x))$ (juxtaposition)
- 3. $\Sigma_k^0(X \rightrightarrows Y) \times \Sigma_k^0(W \rightrightarrows Z) \to \Sigma_k^0(X \times W \rightrightarrows Y \times Z), (f,g) \mapsto f \times g$ (product)
- 4. $\Sigma^0_k(X \rightrightarrows Y^{\mathbb{N}}) \to \Sigma^0_k(X \times \mathbb{N} \rightrightarrows Y), f \mapsto f_*$ (evaluation)
- 5. $\Sigma^0_k(X \times \mathbb{N} \rightrightarrows Y) \to \Sigma^0_k(X \rightrightarrows Y^{\mathbb{N}}), f \mapsto [f]$ (transposition)
- 6. $\Sigma^0_h(X \rightrightarrows Y) \to \Sigma^0_h(X^{\mathbb{N}} \rightrightarrows Y^{\mathbb{N}}), f \mapsto f^{\mathbb{N}}$ (exponentiation)
- 7. $\Sigma_k^0(X \times \mathbb{N} \rightrightarrows Y) \to \Sigma_k^0(X \rightrightarrows Y)^{\mathbb{N}}, f \mapsto (n \mapsto (x \mapsto f(x,n)))$ (sequencing)
- 8. $\Sigma_k^0(X \rightrightarrows Y)^{\mathbb{N}} \to \Sigma_k^0(X \times \mathbb{N} \rightrightarrows Y), (f_n)_{n \in \mathbb{N}} \mapsto ((x, n) \mapsto f_n(x))$ (de-sequencing)

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

- 1

Composition

Proof. For all $U\in \Sigma^0_1(Z)$ and $A_i\in \Pi^0_{n-1}(Y)$ with $g^{-1}(U)=\bigcup_{i=0}^\infty A_i$ we obtain in case n>1

1.
$$(g \circ f)^{-1}(U) = f^{-1}g^{-1}(U)$$
,

2.
$$f^{-1}(\bigcup_{i=0}^{\infty} A_i) = \bigcup_{i=0}^{\infty} f^{-1}(A_i)$$
,

3.
$$f^{-1}(A_i) = X \setminus f^{-1}(Y \setminus A_i)$$
.

Since
$$f^{-1}(Y\setminus A_i)\in \mathbf{\Sigma}^0_{n+k-2}(X)$$
 we obtain $(g\circ f)^{-1}(U)=\bigcup_{i=0}^\infty f^{-1}(A_i)\in \mathbf{\Sigma}^0_{n+k-1}(X).$

Corollary 14 Let X,Y and Z be computable metric spaces and $n,k\in\mathbb{N}$. If $f:X\to Y$ is $\mathbf{\Sigma}_{n+1}^0$ -computable and $g:Y\rightrightarrows Z$ is $\mathbf{\Sigma}_{k+1}^0$ -computable, then $g\circ f$ is $\mathbf{\Sigma}_{n+k+1}^0$ -computable.

(In case of n = 1 the same holds for multi-valued $f: X \rightrightarrows Y$).

Proposition 15 Let X, Y be computable metric spaces and $k \ge 1$. The following operation is computable:

$$\operatorname{Lim} :\subseteq \mathbf{\Sigma}_{k}^{0}(X \rightrightarrows Y)^{\mathbb{N}} \to \mathbf{\Sigma}_{k}^{0}(X \to Y),$$
$$(f_{n})_{n \in \mathbb{N}} \mapsto (x \mapsto \{\lim_{n \to \infty} y_{n} : y_{n} \in f_{n}(x)\}),$$

defined for all sequences $(f_n)_{n\in\mathbb{N}}$ of Σ_k^0 -measurable multi-valued functions $f_n:X\rightrightarrows Y$ which fulfill $d(y_i,y_j)<2^{-j}$ for all $x\in X$ and i>j where $y_n\in f_n(x)$ and any such sequence $(y_n)_{n\in\mathbb{N}}$ is convergent.

Corollary 16 Let X,Y be computable metric spaces and $k \geq 1$. If $(f_n)_{n \in \mathbb{N}}$ is a computable and pointwise convergent sequence of Σ^0_k —computable functions $f_n: X \to Y$ such that additionally $d(f_i(x), f_j(x)) < 2^{-j}$ for all $x \in X$ and i > j, then the limit function $f: X \to Y$ is Σ^0_k —computable as well.

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

10

Representation Theorem

Theorem 17 Let X, Y be computable metric spaces, $k \ge 1$ and let $f: X \to Y$ be a total function. Then the following are equivalent:

- 1. f is (effectively) Σ_k^0 -measurable,
- 2. f admits an (effectively) Σ_k^0 -measurable realizer $F:\subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$.

Proof. Given a Σ^0_k -measurable f, we can effectively find a Σ^0_k -measurable selector F of the composition $\Delta_Y \circ f \circ \delta_X : \operatorname{dom}(\delta_X) \rightrightarrows Y$ by the effective Kuratowski-Ryll-Nardzewski Selection Theorem.

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

15

Effective Kuratowski-Ryll-Nardzewski Selection Theorem

Theorem 18 Let X,Y be computable metric spaces and let Y be complete and $k \geq 2$. There is a computable operation $S: \mathbf{\Sigma}_k^0(X \rightrightarrows Y) \rightrightarrows \mathbf{\Sigma}_k^0(X \to Y)$ such that $f(x) \in \overline{F(x)}$ for any $f \in S(F), F \in \mathbf{\Sigma}_k^0(X \rightrightarrows Y)$ and $x \in X$.

Proof. Given a Σ_k^0 -measurable operation $F:X\rightrightarrows Y$ we construct a sequence of Σ_k^0 -measurable mappings $f_n:X\to Y$ which fulfill

$$d_{F(x)}(f_n(x)) < 2^{-n},$$

 $d(f_n(x), f_{n-1}(x)) < 2^{-n}$

for any $n \in \mathbb{N}$ and we will apply the uniform convergence closure scheme to this sequence.

Proof. Use the identity $f = \delta_Y \circ F \circ \Delta_X$.

This proof idea only works in case of k=1! The idea can be extended to the case k=2 if δ_X is replaced by some equivalent representation with very well-behaved preimages (Schröder's representation).

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

17

Schröder's representation

Definition 19 Let (X, d, α) be a separable metric space. Define $\widehat{\sigma}_X : \subseteq \mathbb{N}^{\mathbb{N}} \to X$ by $\widehat{\sigma}_X(p) = x$ if and only if $p \in \{0, 1\}^{\mathbb{N}}$ and

$$(\forall i, j \in \mathbb{N}) \begin{cases} p\langle i, j \rangle = 0 \Longrightarrow d(x, \alpha(i)) \leq 2^{-j} \\ p\langle i, j \rangle = 1 \Longrightarrow d(x, \alpha(i)) \geq 2^{-j-1} \end{cases}$$

for all $x \in X$ and $p \in \mathbb{N}$.

Lemma 20 Let X be a computable metric space. Then:

- 1. $\widehat{\sigma}_X \equiv_{\mathbf{c}} \delta_X$.
- 2. $\widehat{\kappa}_X : \mathcal{K}_{>}(X) \to \mathcal{K}_{>}(\mathbb{N}^{\mathbb{N}}), K \mapsto \widehat{\sigma}_X^{-1}(K)$ is computable.
- 3. $\Phi_X : \Gamma(\mathbb{N}^{\mathbb{N}}) \to \Gamma(X), A \mapsto \widehat{\sigma}_X(A)$ is computable for $\Gamma \in \{\Pi_1^0, \Sigma_2^0\}$.
- 4. $\widehat{\Delta}_X: X \rightrightarrows \mathbb{N}^{\mathbb{N}}, x \mapsto \widehat{\sigma}_X^{-1}\{x\}$ is strongly Σ_2^0 -computable.

Proposition 21 Let X be a computable metric space and let $D:=\operatorname{dom}(\delta_X)$. Then there is a computable operation $S: \mathbf{\Sigma}_k^0(D \to \mathbb{N}^\mathbb{N}) \rightrightarrows \mathbf{\Sigma}_2^0(X \to \mathbb{N}^\mathbb{N}) \times \mathbf{\Sigma}_k^0(X \to \mathbb{N}^\mathbb{N})$ for any $k \geq 2$ such that $\delta_X \circ s(x) = x$ and $g = F \circ s$ for all $\mathbf{\Sigma}_k^0$ -measurable functions $F: D \to \mathbb{N}^\mathbb{N}$ and $(s,g) \in S(F)$.

Proof. The proof can be done by induction on k. The case k=2 follows from the effective Bhattacharya-Srivastava Selection Theorem. The induction step follows with the help of the Completeness Theorem.

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

19

Effective Bhattacharya-Srivastava Selection Theorem

Definition 22 Let X,Y be computable metric spaces. A multi-valued operation $F:\subseteq X\rightrightarrows Y$ is called *strongly effectively* Σ_k^0 —measurable or strongly Σ_k^0 —computable, if there exists a computable operation $\Phi: \Pi_1^0(Y) \rightrightarrows \Sigma_k^0(X)$ such that $F^{-1}(A) = B \cap \text{dom}(F)$ for any $A \in \Pi_1^0(Y)$ and $B \in \Phi(A)$.

Theorem 23 Let X,W,Z be computable metric spaces, let W be complete with recursive open balls and let $k \geq 2$. For any closed valued strongly Σ_k^0 -measurable $\Delta: X \rightrightarrows W$ and any given Σ_2^0 -measurable function $F:\subseteq W \to Z$ with $\operatorname{range}(\Delta) \subseteq \operatorname{dom}(F)$ we can effectively find a Σ_k^0 -measurable function $s: X \to W$ such that $s(x) \in \Delta(x)$ for any $x \in X$ and $F \circ s: X \to Z$ is Σ_k^0 -measurable.

Proof.

- The classical proof is based on a variant of a Souslin scheme.
- This construction is essentially constructive.
- Certain ineffective choices of points in the classical proof can be eliminated using multi-valued operations and the uniform limit closure scheme.
- Thus, instead of choosing certain points (which is not constructive) we can compute on all possible different points in parallel (which turns out to be constructive).

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

21

Reducibility of functions

Definition 24 Let X, Y, U, V be computable metric spaces and consider functions $f :\subseteq X \to Y$ and $g :\subseteq U \to V$. We say that

• f is *reducible* to g, for short $f \leq_t g$, if there are continuous functions $A :\subseteq X \times V \to Y$ and $B :\subseteq X \to U$ such that

$$f(x) = A(x, g \circ B(x))$$

for all $x \in dom(f)$,

- f is computably reducible to g, for short $f \leqslant_{c} g$, if there are computable A, B as above.
- The corresponding equivalences are denoted by \cong_t and \cong_c .

Proposition 25 The following holds for all $k \ge 1$:

- 1. $f \leqslant_{\mathbf{t}} g$ and g is Σ^0_k -measurable $\Longrightarrow f$ is Σ^0_k -measurable,
- 2. $f \leqslant_{\mathbf{c}} g$ and g is Σ^0_k -computable $\Longrightarrow f$ is Σ^0_k -computable.

Definition 26 For any $k \in \mathbb{N}$ we define $C_k : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ by

$$C_k(p)(n) := \begin{cases} 0 & \text{if } (\exists n_k)(\forall n_{k-1})...p\langle n, n_1, ..., n_k \rangle \neq 0 \\ 1 & \text{otherwise} \end{cases}$$

for all $p \in \mathbb{N}^{\mathbb{N}}$ and $n \in \mathbb{N}$.

Theorem 27 Let $k \in \mathbb{N}$. For any function $F : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ we obtain:

- 1. $F \leqslant_{\mathbf{t}} C_k \iff F \text{ is } \Sigma_{k+1}^0$ -measurable,
- 2. $F \leqslant_{\mathbf{c}} C_k \iff F \text{ is } \Sigma_{k+1}^0$ -computable.

Proof. Employ the Tarski-Kuratowski Normal Form in the appropriate way.

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

23

Realizer reducibility

Definition 28 Let X, Y, U, V be computable metric spaces and consider functions $f: X \to Y$ and $g: U \to V$. We define

$$f \preceq_{\mathsf{t}} g : \iff f \delta_X \leqslant_{\mathsf{t}} g \, \delta_U$$

and we say that f is realizer reducible to g, if this holds. Analogously, we define $f \leq_{\mathbf{c}} g$ with $\leqslant_{\mathbf{c}}$ instead of $\leqslant_{\mathbf{t}}$. The corresponding equivalences $\approx_{\mathbf{t}}$ and $\approx_{\mathbf{c}}$ are defined straightforwardly.

Proposition 29 Let X, Y, U, V be computable metric spaces and consider functions $f: X \to Y$ and $g: U \to V$. Then the following holds for all k > 1:

- 1. $f \leq_{\mathrm{t}} g$ and g is Σ^0_k -measurable $\Longrightarrow f$ is Σ^0_k -measurable,
- 2. $f \leq_{\mathbf{c}} g$ and g is Σ_k^0 -computable $\Longrightarrow f$ is Σ_k^0 -computable.

Definition 30 Let X, Y, U, V be computable metric spaces, let \mathcal{F} be a set of functions $F: X \to Y$ and let \mathcal{G} be a set of functions $G: U \to V$. We define

$$\mathcal{F} \leqslant_{\mathrm{t}} \mathcal{G} : \iff (\exists A, B \text{ computable})(\forall G \in \mathcal{G})(\exists F \in \mathcal{F})$$

$$(\forall x \in \mathrm{dom}(F)) F(x) = A(x, GB(x)),$$

where $A :\subseteq X \times V \to Y$ and $B :\subseteq X \to U$. Analogously, one can define $\leq_{\mathbb{C}}$ with computable A, B.

Proposition 31 Let X, Y, U, V be computable metric spaces and let $f: X \to Y$ and $g: U \to V$ be functions. Then

$$f \leq_{\mathbf{c}} g \iff \{F : F \vdash f\} \leqslant_{\mathbf{c}} \{G : G \vdash g\}.$$

An analogous statement holds with respect to \leq_t and \leqslant_t .

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

25

Completeness Theorem for realizer reducibility

Theorem 32 Let X, Y be computable metric spaces and let $k \in \mathbb{N}$. For any function $f: X \to Y$ we obtain:

- 1. $f \leq_{\mathbf{t}} C_k \iff f$ is Σ_{k+1}^0 —measurable,
- 2. $f \leq_{\operatorname{c}} C_k \iff f$ is Σ^0_{k+1} -computable.

Proof. We consider the computable case (2), the topological case (1) can be proved analogously. Let f be Σ_{k+1}^0 -computable. Then by the Representation Theorem f admits a Σ_{k+1}^0 -computable realizer F and hence $F\leqslant_{\mathbb{C}} C_k$ by the Completeness Theorem. Since δ_Y is computable and $\delta_{\mathbb{N}}^{\mathbb{N}}$ admits a computable right inverse, it follows $f\delta_X=\delta_Y F\leqslant_{\mathbb{C}} C_k\delta_{\mathbb{N}}^{\mathbb{N}}$ and thus $f\preceq_{\mathbb{C}} C_k$. Now let, on the other hand, $f\preceq_{\mathbb{C}} C_k$. Since C_k is Σ_{k+1}^0 -computable by the Completeness Theorem, it follows that f is Σ_{k+1}^0 -computable.

Definition 33 Let X, Y be computable metric spaces, let $f: X \to Y$ be a function and $k \in \mathbb{N}$. Then f is called \sum_{k+1}^{0} —complete, if $f \approx_{\mathbf{c}} C_{k}$.

Theorem 34 Let X,Y be computable Banach spaces and let $f:\subseteq X\to Y$ be a closed linear and unbounded operator. Let $(e_n)_{n\in\mathbb{N}}$ be a computable sequence in $\mathrm{dom}(f)$ whose linear span is dense in X and let $f(e_n)_{n\in\mathbb{N}}$ be computable in Y. Then $C_1\leqslant_{\mathbb{C}} f$.

This generalizes The First Main Theorem of Pour-El and Richards.

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

27

Arithmetic complexity of points

Definition 35 Let X be a computable metric space and let $x \in X$. Then x is called Δ_n^0 -computable, if there is a Δ_n^0 -computable $p \in \mathbb{N}^{\mathbb{N}}$ such that $x = \delta_X(p)$.

Proposition 36 If (X, d, α) is a computable metric space such that the equivalence problem for balls

$$\{\langle m, k, i, j \rangle \in \mathbb{N} : B(\alpha(m), \overline{i}) = B(\alpha(k), \overline{j})\}$$

is r.e., then we obtain for any point $x \in X$ and $n \ge 1$:

$$x \text{ is } \Delta^0_n\text{--computable} \iff \{\langle m,i\rangle \in \mathbb{N}: x \in B(\alpha(m),\overline{i})\} \in \Sigma^0_n.$$

Theorem 37 Let X, Y be computable metric spaces.

- If $f: X \to Y$ is Σ^0_k -computable, then it maps Δ^0_n -computable inputs $x \in X$ to Δ^0_{n+k-1} -computable outputs $f(x) \in Y$ for all $n, k \geq 1$.
- If f is even Σ^0_k —complete and $k \geq 2$, then there is some Δ^0_n —computable input $x \in X$ for any $n \geq 1$ which is mapped to some Δ^0_{n+k-1} —computable output $f(x) \in Y$ which is not Δ^0_{n+k-2} —computable.

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

20

Completeness of the limit

Proposition 38 Let X be a computable metric space and let $c:=\{(x_n)_{n\in\mathbb{N}}\in X^\mathbb{N}: (x_n)_{n\in\mathbb{N}}\in X^\mathbb{N} \text{ converges}\}$ denote the computable metric subspace of $X^\mathbb{N}$. The ordinary limit map

$$\lim : c \to X, (x_n)_{n \in \mathbb{N}} \mapsto \lim_{n \to \infty} x_n$$

is Σ^0_2 -computable and it is even Σ^0_2 -complete, if there is a computable embedding $\iota:\{0,1\}^{\mathbb{N}}\hookrightarrow X$.

Proof. On the one hand, Σ_2^0 -computability follows from

$$\lim^{-1}(B(x,r)) = \left(\bigcup_{n=0}^{\infty} X^n \times \overline{B}(x,r-2^{-n})^{\mathbb{N}}\right) \cap c \in \Sigma_2^0(c)$$

and on the other hand, Σ_2^0 -completeness follows from

$$C_1 \leqslant_{\mathbf{c}} \lim_{\{0,1\}^{\mathbb{N}}} \leqslant_{\mathbf{c}} \lim_X$$
.

Completeness of differentiation

Proposition 39 Let $C^{(1)}[0,1]$ be the computable metric subspace of C[0,1] which contains the continuously differentiable functions $f:[0,1]\to\mathbb{R}$. The operator of differentiation

$$d: \mathcal{C}^{(1)}[0,1] \to \mathcal{C}[0,1], f \mapsto f'$$

is Σ_2^0 -complete.

Proof. d is a linear closed an unbounded operator which is computable on the dense sequence of rational polynomials. Hence, $C_1 \leqslant_{\mathbf{c}} d$. On the other hand, we obtain

$$f'(x) = \lim_{n \to \infty} \frac{f(x + (1-x)2^{-n}) - f(x - x2^{-n})}{2^{-n}}$$

for all $f \in \mathcal{C}^{(1)}[0,1]$ and $x \in [0,1]$. Thus, d can be obtained as a limit of a pointwise convergent sequence of Σ^0_1 —computable functions and is therefore Σ^0_2 —computable.

Vasco Brattka

Theoretische Informatik I · FernUniversität in Hagen

3

Effective Banach-Hausdorff-Lebesgue Theorem

Theorem 40 Let X and Y be computable metric spaces and let $k \geq 1$. There is a computable operation

$$\Lambda: \mathbf{\Sigma}^0_{k+1}(X \to Y) \rightrightarrows \mathbf{\Sigma}^0_{k}(X \rightrightarrows Y^{\mathbb{N}})$$

such that $\lim \circ L = f$ for all $f \in \Sigma^0_{k+1}(X \to Y)$ and $L \in \Lambda(f)$.

Corollary 41 Let X and Y be computable metric spaces and let $k \geq 2$. Then for any Σ_{k+1}^0 -computable function $f: X \to Y$ there is a computable sequence $(f_n)_{n \in \mathbb{N}}$ of Σ_k^0 -computable functions such that $f = \lim_{n \to \infty} f_n$. For $X = \mathbb{N}^\mathbb{N}$ this holds true in case k = 1 as well.