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I
Die Endlichkeit der Formen in einem beliebigen Formensysteme.

Unter einer algebraischen Form verstehen wir in iiblicher Weise
eine ganze rationale homogene Function von gewissen Verinderlichen
und die Coefficienten der Form denken wir uns als Zahlen eines be-
stimmten Rationalititsbereiches. Ist dann durch irgend ein Gesetz
ein System von unbegrenzt vielen Formen von beliebigen Ordnungen
in den Veriinderlichen vorgelegt, so entsteht die Frage, ob es stets
moglich ist, aus diesem Formensysteme eine endliche Zahl von Formen
derart auszuwihlen, dass jede andere Form des Systems durch lineare
Combination jener ausgewihlten Formen erhalten werden kann, d. h.
ob eine jede Form des Systems sich in die Gestalt

Fe=A4F + 4LF, 4 -+ 4o F,
bringen ldsst, wo F,, F,, ..., F, bestimmt ansgewdhite Formen des
gegebenen Systems und A4,, 4,, ..., 4, irgendwelche, dem nimlichen
Rationalitidtsbereiche angehorige Formen der Verinderlichen sind. Um

diese Frage zn entscheiden, beweisen wir zunichst das folgende fiir
unsere weiteren Untersuchungen grundlegende Theorem:

*) Vgl. die vorliufigen Mittheilungen des Verfassers: ,Zur Theorie der
algebraischen Gebilde*, Nachrichten v. d. kgl. Ges. d. Wiss. zu Gottingen, 1888
(erste Note) und 1889 (aweite und dritte Note).
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Theorem 1. Ist irgend eine micht abbrechende Reihe von Formen
der n Verdnderlichen z,, z,, ..., . vorgelegt, etwa F, F,, F,, ...,
so giebt es stets eine Zahl m vom der Art, aass eine jede Form jener
Reihe sich in die Gestalt

F=AF + 4, F,+---+ Ao F,

bringen lisst, wo A,, A,, ..., A, geeignete Formen der namlichen n
Verinderlichen sind.

Dije Ordnungen der einzelnen Formen der vorgelegten Reihe sowie
ihre Coefficienten unterliegen keinerlei Beschrinkungen. Denken wir
uns die letzteren als Zahlen eines bestimmten Rationalititsbereiches,
so diirfen wir annehmen, dass die Coefficienten der Formen 4,,4,,...,4,
dem nimlichen Rationalititsbereiche angehdren. Was die Ordnungen
der Formen 4,, 4,, ..., A, betrifftt, so miissen dieselben jedenfalls
der Bedingung geniigen, dass der mit Hiilfe dieser Formen gebildete

Ausdruck
AF, A A Fy + - - -+ A, F,

wieder eine homogene Function der » Verinderlichen darstellt und
es sei hier zugleich auch fiir die ferneren Entwickelungen bemerkt,
dass in allen Fillen, wo es sich um eine additive Vereinigung oder
lineare Combination mehrerer Formen handelt, die Ordnungen der
Formen so zu wihlen sind, dass die Homogenitit der entstehenden
Ausdriicke gewahrt bleibt.

In dem einfachsten Falle » = 1 besteht eine jede Form der vor-
gelegten Reihe nur aus einem einzigen Gliede von der Gestalt car, wo
¢ eine Constante bedeutet. Es sei in der vorgelegten Reihe ¢,z die
erste Form, fiir welche der Coefficient ¢, von Null verschieden ist.
Wir suchen nun die nichste auf diese Form folgende Form der Reihe,
deren Ordnung kleiner ist als 7,; diese Form sei ¢,2™*'und es ist dann
wiederum die nichste auf letztere Form folgende Form der Reihe zu
bestimmen, deren Ordnung kleiner ist als 7r,; diese Form sei c¢jam.
Fahren wir in solcher Weise fort, so gelangen wir jedenfalls spitestens
nach r, Schritten zu einer Form F), der vorgelegten Reihe, auf welche
keine Form von niederer Ordnung mehr folgt und da mithin eine jede
Form der Reibe durch diese Form F,, theilbar ist, so ist m eine Zahl
von der Beschaffenheit, wie sie unser Theorem verlangt.

Auch fiir den Fall n = 2 lisst sich unser Theorem I. auf ent-
sprechendem Wege ohne Schwierigkeit beweisen. Es geniige die
folgende kurze Andeutung dieses Beweises. Wenn die biniren Formen
der vorgelegten Formenreihe simmtlich die namliche binire Form als
gemeinsamen Factor enthalten, so schaffen wir zunichst diesen Factor
durch Division' fort. Es ist sodann stets mdglich, ans den Formen
der ‘erhaltenen Reihe durch lineare Combination zwei binire Formen
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G und H zu bilden, welche keinen gemeinsamen Factor besitzen. Ist
dies geschehen, so ldsst sich jede beliebige bindre Form F', deren
Ordnung nicht kleiner ist als die Summe » der Ordnungen der Formen
G und H in die Gestalt

F=AG-+ BH

bringen, wo A und B geeignet zu bestimmende Formen sind. Im
Besonderen ist daher auch jede in der Reihe enthaltene Form, deren
Ordnung die Zahl r erreicht oder iibersteigt, einer linearen Combi-
nation der Formen G und H gleich. Was endlich die Formen der
Reihe anbetrifft, deren Ordnungen kleiner als die Zahl r sind, so
kann man unter diesen jedenfalls eine endliche Anzahl derart aus-
wihlen, dass alle anderen Formen der Reihe linearen Combinationen
der ausgewihlten Formen gleich sind.

Will man in &Zhnlicher Weise unser Theorem I. fiir den Fall
ternirer Formen beweisen, so wiirde vor Allem der Noether’sche
Fundamentalsatz*) von den Bedingungen der Darstellbarkeit einer
terniren Form durch zwei gegebene Formen anzuwenden sein und
hierbei wire dann eine sorgfiltige Untersuchung aller moglichen
Ausartungen des durch Nullsetzen der beiden gegebenen Formen defi-
nirten Werthesystems erforderlich. Da die durch diesen Umstand be-
dingten Schwierigkeiten mit der Zahl » der Verinderlichen immer
stirker zunehmen, so schlagen wir zum Beweise des Theorems einen
anderen Weg ein, indem wir allgemein zeigen, wie sich der Fall der
Formen von n Verinderlichen auf den Fall von # — 1 Verénderlichen
zuriickfithren ldsst.

Es sei F\,F,, F,,... die gegebene Reihe von Formen der %
Verinderlichen 2, 2,, ..., #, und F, sei eine nicht identisch ver-
schwindende Form von der Ordnung . Wir bestimmen dann zuniichst
eine lineare Substitution der Verdnderlichen z,, @,, ..., Zx,. welche
eine von Null verschiedene Determinante besitzt und ausserdem die
Form F, in eine Form @, der Verinderlichen y,, ¥,, ..., y. derart
iiberfihrt, dass der Coefficient von ¢ in der Form G, einen von Null

verschiedenen Werth annimmt. Vermdge der nimlichen linearen Sub-
stitution mogen die Formen F,, F,, ... bezichungsweise in @,, G, ...
iibergehen. Betrachten wir nun eine Relation von der Gestalt

G.s = "BfGI + ‘B2G? + .- + Bme,

wo s irgend einen Index bezeichnet wnd B,, B,, ..., B,y Formen der
Verdnderlichen 4, %,, . . ., ¥, sind, so geht dieselbe vermbge der um-
gekehrten linearen Substitution in eine Relation von der Gestalt

*) Vgl. M. Noether, Math. Ann. Bd. 6 und 80, sowie A. Voss, Math, Ann.
Bd. 27 und L. Stickelberger, Math. Aon, Bd, 30,

21¥
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Fo=AF + A4, F,+ -+ A, Fy,

iiber, wo A4,, 4,, ..., A, Formen der urspriinglichen Verinderlichen
Zyy Zoy -+ Ly sind. Hs folgt daher unser Theorem I. fiir die urspriinglich
vorgelegte Formenreihe F), F,, F,, ..., sobald der Beweis des Theorems
fir die Formenreihe G, @,, G5, ... gelungen ist.

Da der Coefficient von y’ in &; einen von Null verschiedenen
Werth besitzt, so lisst sich der Grad einer jeden Form G, der ge-
gebenen Reihe in Bezug anf die Verdnderliche y, dadurch unter die
Zahl r herabdriicken, dass man G, mit einer geeigneten Form B,
multiplicirt und das erhaltene Product von G, subtrahirt. Wir setzen
dementsprechend fiir beliebige Indices s

Gs= BsG"i + .q‘,]_y;;-l +932y3;—2 + Tt +gsr’

wo B, eine Form der » Verinderlichen y,, ¥,, ..., ¥, ist, wihrend
die Formen g;1, gs2, ..., 9s» nur die x—1 Verinderlichen y,,4,,...,4n—1
enthalten.

Wir nehmen nun an, dass unser Theorem I. fiir Reihen von
Formen mit » — 1 Verdnderlichen bereits bewiesen ist und wenden
dasselbe auf die Formenreihe g,,,9,,95,..- an. Zufolge des Theorems 1.
giebt es dann eine Zahl p von der Art, dass fiir jeden Werth von s
eine Relation von der Gestalt

gy = bsngu -+ bs29‘21 + -+ bsﬂgﬂl = Zs(gin Ga15 - - g.ul)

besteht, wo bey, bs2, . . ., bsp Formen der z — 1 Verinderlichen
Yis Yas « - » Yo sind. Wir bilden nun die Formen

M) 9 =g — UGty Gty e Gur)y (E=1,2,..,7)

woraus sich insbesondere fiir t =1

1
¢ =0

ergiebt. Wir nehmen hierauf wiederum das Theorem I. fiir den Fall
von # — 1 Veréinderlichen in Anspruch, indem wir dasselbe auf die
Formenreihe g%, g%, ¢, . . . anwenden. Zufolge dieses Theorems
giebt es dann eine Zahl y® von der Art, dass fiir jeden Werth von s

eine Relation von der Gestalt
W __ g0 My oy @ M L0 __ @1 1) ®
Gse 1 012 + bsggzg + + b‘m(l)g,‘(l)z ls (912; 922, s g#(1)2)
besteht, wo b{, bfz), oo, B "~ Formen der n — 1 Verinderlichen
s
Y5 Yzy + - o Yoz sind. Wir setzen nun

@ o =g — B0 g 0y) E=152,...9)

woraus sich insbesondere fir {=1,2
. .
gﬁg = O: g‘g =0
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ergiebt. Die Anwendung des Theorems I auf die Formenreihe
9%, 9%, o8, ... fubrt zu der Relation

(2) 2)f2) () )
963 = 1(93, 95 -+ 900,)
und setzen wir dann
3 2) /.2 (@ 2
(3) g-gt) = 9-(” - Zi‘)(g”): g?t)’ ey g( ()2) )1 (t = 1) 27 ey 7‘)
JARE)
so folgt insbesondere
3 3 3
9-(?1) =Y, .95:2) = 0, g§3’ = 0,

Nach wiederholter Anwendung dieses Verfahrens ergeben sich die

Relationen
~2) _(r—2) (r—2)

@ g =g — W o7, 00 ), G=12,7)

—~1 —1 —1
9&2 )zo, g.(:; )==O; ..oy ggr—r)I;—"O

und schliesslich erhilt man

gyr—n == lgr——l)( i 1)’ ggr_l)v s z(:i)x) r)’
woraus
By 0= g™ — = (g(f%"l), P o A 9:;:3;,) t=1,2,...7)
folgt. Durch Addition der Gleichungen (1), (2), (3),.. ., (4), () er-

giebt sich

9ot = Us(91¢, Gaty o+ - Gur) + Z?’(g?}, gélt)’ o ,fj()l)t) T

—1 1 -1 -1
F U 5050 ) E=1,2,. 0.

Auf der rechten Seite dieser Formel kdnnen wir die Formen

(1) (1) 1 (r—1) _(r—1) (r—1)
Giis G2¢y « - o gyu)t’ v 1z 92’: E IR 1Y y("'l)t

in Folge wiederholter Anwendung der Gleichungen (1), (2), (3), ..., (4)
durch lineare Combinationen der Formen g¢i;, go:, - . ., gn: ersetzen,
wo m die grosste von den Zahlen g, p®, ... u¢—b bezeichnet. Wir
erhalten auf diese Weise aus der letzteren Formel ein Gleichungs-

system von der Gestalt:
9ss = Cs1 01 + Cs2 J2:¢ + .-+ Csm Gmt == 75.:(9;:, Doty « v o gmt}1
t=12,..,1
WO Cat, Cs2y » « - G 'Wiederum Formen der # — 1 Verdinderlichen
Y15 Yss + - » Ya—r sind. Multipliciren wir die letztere Formel mit y,—*
und addiren die daraus fir ¢ =1, 2, ..., r entstehenden Gleichungen,
so folgt wegen
91 Y5 F 922 - -+ Gor = G, — B, Gy
die &leichung
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Gg""’" BgGl = kS(Gi - “BiGI) Gz — BflGl’ . 0y Gm — BmGi),

oder, wenn C, eine Form der »n Verdnderlichen y,, 45, ... %
bezeichnet

G, = G, TGy, Gy . - oy G = L(Gy, G,y - -, G,

d. h. die Zahl m ist fiir die Formenreihe G,, G,, G5, ... und folglich
auch fiir die wurspriinglich vorgelegte Formenreihe F\, F,, F,, ...
eine solche Zahl, wie sie Theorem 1. verlangt. Somit gilt unser
Theorem I. fiir den Fall von % Verinderlichen unter der Annahme,
dass dasselbe fiir Formen von # — 1 Verinderlichen bewiesen ist. Da
das Theorem 1. fiir eine Reihe von Formen einer homogenen Ver-
anderlichen oben bereits als richtig erkannt wurde, so gilt dasselbe
allgemein.

Vermoge des Theorems I. ldsst sich vor Allem diejenige Frage
allgemein beantworten, welche zu Anfang dieser Arbeit angeregt
wurde. KEs sei nimlich ein beliebiges System von unbegrenzt vielen
Formen der # Verdnderlichen z,,,, ... 2. gegeben, wobei es frei-
gestellt ist, ob diese Formen sich in eine Reihe ordnen lassen oder
in nicht abzihlbarer Menge vorhanden sind. Um ein solches Formen-
system festzulegen, denke man sich ein Gesetz gegeben, vermoge
dessen ausnahmslos fiir eine jede beliebig angenommene Form ent-
schieden werden kann, ob sie zu dem Systeme gehoren soll oder
nicht. Wir nehmen nun an, es sei nicht moglich, aus dem gegebenen
"Formensystem eine endliche Zahl von Formen derart auszuwahlen,
dass jede andere Form des Systems durch lineare Combination jener
ausgewihlten Formen erhalten werden kann. Dann wihlen wir nach
Willkiir aus dem System eine nicht identisch verschwindende Form
aus und bezeichnen dieselbe mit F,; ferner mige ¥, eine Form des
Systems sein, welche nicht einem Producte von der Gestalt 4,F,
gleich ist, wo A4, eine beliebige Form der » Verinderlichen z,,z,,..., 2,
bedeutet; F, sei eine Form des Systems, welche sich nicht in die
Gestalt 4, F, 4+ 4, F, bringen lisst, wo 4, und 4, wiederum Formen
YOR 2y, %y, .« ., & sind. Entsprechend sei F, eine Form des Systems,
welche sich nicht in die Gestalt 4, F, + 4, F, 4 A; F,; bringen lasst
und wenn wir in dieser Weise fortfahren, so gewinnen wir eine
Formenreihe F,, F,, F,, ..., welche zu Folge der gemachten An-
nahme im Endlichen nicht abbrechen kann und in welcher trotzdem
keine Form durch lineare Combination der vorhergehenden Formen er-
halten werden kann. Dieses Ergebniss widerspricht unserem Theorem I,
und da somit die vorhin gemachte Annahme unzuldssig ist, so erhalten
wir den Satz:

Aus einem jeden beliebig gegebenen Formensysteme lisst sich stets
eime endliche Zohl von Formen derart auswihlen, dass jede amdere
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Form des Systems durch lineare Combination jener ausgewdihlten Formen
erhalten werden kann.

Wir betrachten insbesondere solche Formensysteme, denen die
Eigenschaft znkommt, dass jedes Product einer Form des Systems mit
einer beliebigen anderen, nicht nothwendig zum System gehorigen Form
sowie jede in den Verdnderlichen z,, z,, ... 2, homogene Summe
von solchen Producten d. h. jede lineare Combination von Formen des
Systems wiederum dem Systeme angeh6rt. Ein solches System von
unbegrenzt vielen Formen heisst ein Modul und somit lehnen diese
Auseinandersetzungen, soweit sie spiterhin die Theorie der Moduln
betreffen, an diejenige Bezeichnungsweise und Begriffsbestimmung an,
welche L. Kronecker in der von ihm begriindeten und neuerdings
systematisch ausgebildeten Theorie der Modulsysteme *) anwendet. Doch
ist hervorzuheben, dass im Unterschiede zu den von L. Kronecker
behandelten Fragen bei unseren Untersuchungen, vor Allem in Ab-
schnitt IIT und IV dieser Arbeit, die Homogenitit der Functionen
des Moduls eine wesentliche und nothwendige Voraussetzung bildet.
Sprechen wir den vorhin bewiesenen Satz insbesondere fiir einen Modul
aus, so erbhalten wir unmittelbar den folgenden Satz:

Aus den Formen eines beliebigen Moduls lisst sich stets eine endliche
Anzahl von Formen derart auswihlen, dass jede andere Form des Moduls
durch lineare Combination jener ausgewdihlten Formen erhalten werden
kann.

Um fiir diesen Satz ein anschauliches Beispiel zn gewinnen, nehmen
wir eine algebraische Raumeurve als gegeben an und fragen nach dem
vollen Systeme der diese Raumcurve enthaltenden algebraischen Flichen.
Da die linken Seiten der Gleichungen dieser Flichen quaternire For-
men sind, welche durch lineare Combination Formen des nimlichen
Systems ergeben, so bilden diese Formen einen Modul und der obige
Satz erhalt mithin fiir diesen besonderen Fall die folgende Deutung:

Durch eine gegebene algebraische Rawmecurve lisst sich eine endliche
Zahl m von Flichen
Fi=0, F,=0,..,,F,=0
hindurchlegen derart, dass jede andere die Curve enthaltende algebraische
Fliche durch eine Gleichung von der Gestalt

A Fy 4 A, Fy+ - - -+ AnFr =0

#) Vgl L. Kronecker, Crelle’s Journal, Bd. 92, pag. 70—122, Bd. 93,
pag. 365—366, Bd, 99, pag. 329—371, Bd. 100, pag. 490—510. Berliner
Sitzungsberichte, 1888 pag. 249 —258, 263—281, 331—35%, 379896, 615-—648;
und ferner: B.Dedekind und H. Weber, Crelle’s Journal, Bd. 92, pag, 181 —235,
sqwie J. Molk, Acta mathematica Bd. 6, pag. 50—165.
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dargestellt werden kann, wo unter A,, 4,, . . ., An qualernire Formen
zu verstechen sind®).
Beispielsweise sei eine cubische Raumecurve durch die Gleichungen

Zy = g137
Zy = 512523
6
( ) 933 = 51222:
zy, =}

gegeben, wo z,, %,, Z, #, die homogenen Coordinaten ihrer Punkte
und &, £, die homogenen Parameter sind. Durch diese Raumcurve
gehen die 3 Flichen
Fi=0, F,=0, F;=0
hindurch, wo
F, = z25 — 2%,

Fy = 2,2, — 2,2,,

F, = 2,2, — 2,®
quadratische Formen bedeuten, von denen keine durch lineare Com-
bination der beiden anderen erhalten werden kann. Um nun zu zeigen,

dass auch jede andere die Raumcurve enthaltende Fliche sich durch
eine Gleichung von der Gestalt

A4, F, + A4, F, + 4, F, =0

darstellen lisst, nehmen wir an, es sei

F= D10, s apa;ay
eine Form, welche bei Anwendung der Substitution (6) identisch gleich
Null wird. Mit Hiilfe der Congruenzen

a3 =2, (Fy, F,, Fy),

X%y = Xy %5, (Fy, F,, Fy),

%, =, (B, F,, F)
kénnen wir setzen

(7) FE C‘L”axfxﬁ%‘? +2 02'226 xgqxgs +20F3P4$§¢3 5(7:‘, F"'F,?’Fs)’

worin C,.,, Cha, C,,., wiederam gewisse Zahlencoefficienten bedeuten.
Ausserdem darf angenommen werden, dass keiner der beiden Expo-
nenten 1, und 4, gleich Null ist, da entgegengesetztenfalls das be-
treffende Glied sich aus der zweiten Summe entweder in die erste oder

*) Die hier erledigte Frage nach der Endlichkeit der eine Raumecurve ent~
haltenden Flichen wirft bereits G. Salmon in seinem Lehrbuche anf; vgl. ana-
ytische Geometrie des Raumes, Thei] I, 79,
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in die dritte Summe hineinziehen lisst. Wegen der Homogenitit der
rechten Seite von (7) ist

%y —+ Ky ==Ly + Ay = py + g,

3u, 4 2%, > 24, -+ A3 > Y.
Fiihren wir jetzt vermdge der Gleichungen (6) die Parameter §,, E,
in der rechten Seite von (7) ein, so erkennen wir, dass keines der

so entstehenden Glieder CEP £ sich mit einem in der ndmlichen oder
in einer anderen Summe entstehenden Gliede vereinigen kann und da
andererseits der Ausdruck auf der rechten Seite von (7) nach jener
Substitution (6) verschwinden soll, so sind nothwendigerweise die Coeffi-
cienten Oy ., Cuz, Cu pu simmtlich gleich Null. Aus der Congruenz

(7) erhalten wir somit
F=0 (&, F,, F;)

F=A4,F + A,F, 4 4, F,.

Eine anderweitige Verwendung finden unsere allgemeinen Ent-
wickelungen in der Theorie der Gleichungen, wenn man nach den-
jenigen ganzen homogenen Functionen der Coefficienten einer Gleichung
fragt, welche verschwinden, sobald die Gleichung eine gewisse Anzahl
vielfacher Wurzeln besitzt. Da das System aller dieser Functionen
einen Modul bildet, so erhalten wir den Satz:

Es giebt eine endliche Anzahl von gamzen homogenen Functionen
der Coefficienten einer algebraischen Gleichufig, welche verschwinden,
sobald die Gleichung eine gegebene Zahl vielfacher Wurzeln erhiilt und
aus welchen sich eine jede andere gamze Function von derselben Figen-
schaft in linearer Weise zusammensetzen ldsst.

Sollen beispielsweise alle diejenigen homogenen Functionen der
Coefficienten ,, z,, 5, &,, 2; der biniren Form 4'r Ordpung

@ =z, §,* + 42,8,%8, + 628,28, + 42,8, 8% + 2,8,
angegeben werden, welche verschwinden, sobald die Form ¢ eine
volle 4t Potenz wird, so bedarf es dazu der folgenden 6 quadratischen
Formen

und hieraus folgt

oder

F]_ === $1x3 — .1}22,

F, = x5, — %%,

Fy = 2, — 2,%,,

Fy = z,2; — x5,

Fy = 2,2, — 2324,

Fy = w2y — 23
und man iiberzeagt sich ohne Schwierigkeit auf dem entsprechenden
Wege wie vorhin, dass jede andere Function F von der verlangten
Eigenschaft in die Gestalt
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F"’*‘A:-E +A»2F2+' -+ A Fy
gebracht werden kann, wo 4,, 4,, ..., 4, homogene Functionen von
Xy, Xy Xy, %y, %y sind.

Will man zweitens alle diejenigen homogenen Functionen der
Coefficienten von ¢ angeben, welche verschwinden, sobald die binire
Form ¢ ein volles Quadrat wird, so ist es nothig, die folgenden 7
Functionen zu bilden

F, = 2z, — 32, 2,7, 4 22,3,

F, = 2?2 + 22, 2,3, — 92, 2.? | 62,27,

F; = 22,2, — 32,232, + 22,°2,,

Py = 2,2, — x,2%;,

Fy = 2y2,2; — 32,235 + 22,27,

Fo = 2,22 + 22,3, %5 — 9z2%, 4 62,22,

F, = 2,22 — 3x,2,2, + 22,5,
Diese 7 Functionen stimmen im wesentlichen iiberein mit den Coef-
ficienten der Covariante 6'r Ordnung und 3t Grades von ¢ und
hieraus lasst sich durch ein invariantentheoretisches Schlussverfahren

zeigen, dass jede andere homogene Function von der verlangten Eigen-
schaft in die Gestalt
A1F1+A2F2+"‘+A7F7 .

gebracht werden kann, wo 4;, 4,,..., 4; wiederum homogene Func-
tionen sind.

Von allgemeinerer Natur und iiberdies von principieller Bedeutung
fiir die spiterhin folgenden Untersuchungen ist der folgende Satz:

Simd F,, F,, ..., F_u gegebene Formen der n Verinderlichen

m
Zyy Loy « - +y Tn, SO existirt stels eine endliche Zahl m® von Formen-
systemen

X,=Xy, Xy=2X3,..,X

m

X, "*-’-‘X;z; X == X?ﬂ’ « sy Xm(1)== X w2,

w =X m,,

X, = le@), X X @300 Xy = X,,.m al®,
welche simmilich die Gleichung
F,X,+ FX, 4+ P Xpm =0
identisch befriedigen wnd durch welche jedes andere jener Gleichumg
geniigende Formensystem in der Gestali-
Xi = 4, Xn + Athz +-- Am@) 1@,
X, “"’A—txzs + Azxn -i- +Am<2) Xm@%,

ps

mez>~=-‘~= A:L'Xmiih + Az R + -i— 4 e x w0 m(sy,
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ausgedriickt werden kann, wo A, 4,, ..., A (¢ ebenfalls Formen der
Verinderlichen ,, Z,, . . ., . Sind.

Der Beweis dieses Satzes beruht auf unseren allgemeinen Ent-
wickelungen fiber die Endlichkeit der Formen eines beliebigen Systems.
Es sei X, X,,..., X ) irgend ein Losungssystem der vorgelegten
Gleichung

FX+FX,4+---+F X n=0
und in jedem solchen Losungssysteme werde insbesondere die letzte
Form X 1) ins Auge gefasst. Auf Grund unserer friiheren allgemeinen
Sitze ist es dann moglich, aus der Gesammtheit dieser Formen X
eine endliche Zahl g von Formen X ), X a),, ..., X, derart
auszuwihlen, dass jede andere solche Form in die Gestalt
Xaoy= A/ X o), + 4" X o+ - -+ 4. X,

gebracht werden kann. Bilden wir nun die Formen

X=X, —A' Xy — A,/ Xpp— - - - — A, Xy ((=1,2,...,mD),
woraus sich insbesondere fiir ¢ = m®)
X 1) =0
ergiebt, so erkennen wir, dass jeder Losung X, X,, ..., X () der

urspriinglich vorgelegten Gleichung eine Losung X", X/, ..., Xa0
der Gleichung

FX +FX 4+ -+ Fu X g =0

entspricht und es lisst sich offenbar auch umgekehrt jede Losung der
urspriinglich vorgelegten Gleichung durch Combination aus den g
Losungssystemen

X=Xy, X, =X50,.., X =X, (=12,..,8)

und aus einem Losungssystem der eben erhaltenen Gle:chung zZusam-
mensetzen. Die letztere Gleichung enthilt aber nur m® — 1 zn be-
stimmende Formen und wenn folglich der oben ausgesprochene Satz
fiir eine solche Gleichung als richtig angenommen wird, so ist derselbe
auch fiir die vorgelegte Gleichung bewiesen. Nun gilt unser Satz fiir
m® =1, da die diesem Falle entsprechende Gleichung

F 1 X1 == O
offenbar gar keine Losung besitzt und damit ist der Beweis allgemein
erbracht.
Als Beispiel diene die Gleichung
(2 — 2,9 X + (2, 2y — 2y %) X, 4 (@2, — 2,57 Xs =0,
wo als Coefficienten die nimlichen 3 quadratischen Formen auftreten,

auf welche wir oben bei Behandlung der cubischen Raumcurve gefiihri
wurden. Wir erkennen leicht, dass ans den. beiden Lésungssystemen
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X, =23, X,=um,, X;=mum,
Xi=x, X,=u, X;=u,

sich jedes andere Losungssystem jener Gleichung zusammensetzen lisst.
Denn bezeichnet X,, X,, X, irgend ein Liosungssystem, so kann man
zonichst mit Hiilfe des ersteren der beiden Losungssysteme alle die-
jenigen Glieder in der Form X, wegschaffen, welche z; als Factor
enthalten und hierauf lassen sich mit Hiilfe des zweiten Losungssystems
alle mit z, multiplicirten Glieder in X, beseitigen, sodass in dem nun
entstandenen Losungssysteme X, X', X." die Form X," von z, und
z, unabhidngig ist. Setzen wir jetzt in der identisch erfiillten Relation
(@ 23 — 2 X) + (#2 — 2,2) Xy + (1,2, — 257) X' =0
%y =0 und z, =0 ein, so ergiebt sich X,'=0 und bieraus folgt
dann
X, =A@y, —25%), X = A(r,2,—2,%),
wo A eine beliebige Form der Verinderlichen z,, z,, z;, x, bedeutet.
Auch das so erhaltene Losungssystem ist eine Combination jener beiden
vorhin angegebenen Lisungssysteme, wie man erkennt, wenn man das
erstere Losungssystem mit Az, das aweite mit — Az, multiplicirt
und dann die entsprechenden Formen addirt.
Als zweites Beispiel wahlen wir die Gleichung
Fi X +FX,+ -+ F X;=0,
wo F,, F,, ..., Fy; die oben angegebenen 6 quadratischen Formen
der 5 Verinderlichen z,, z,, #;, 2,, #; bedenten. Man erhilt die
folgenden 8 Lésungen

X=x;, Xye=—2,, Xy=—2z;,, X;= z,, X;=0, Xy= 0
X\=z;,, Xy=—2;, Xy=—2,, X;= z, X,=0, X;= 0
Xi=z;,, X,= 0, Xy=—u;, X;= 0, X,=2,, X= 0,
X,=0, X,= =z, 3= 0, Xj=—2, X=z, X= 0
X,=0, X,= 2z, X;=—z, X;= 0, X;=0, Xj= gz,
X=0, X,= z, X=—z, X;= 0, X,;=0, X= uo,,
X,=0, X,= 0, X,= g, X=—z, X=z, X=—2,
X,=0, X= 0, X= =z, Xj=—2z, X=2, X=—u,,
und man zeigt dann in derselben Weise wie in ersterem Beispiele,

dass jede andere Losung durch Combination aus diesen erhalten wer-
den kann. '

Wir haben vorhin die Endlichkeit des vollen Systems von Lisungen
fiir den Fall bewiesen, dass es sich um eine einzige Gleichung handelt.
Aber die dort benutzte Schlussweise, fibertrigt sich unmittelbar auf
den-Fall, in welchem mehrere Gleichungen von der in Redé¢ stehenden
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Art gleichzeitig zu béfriedigen sind. Wir sprechen daher den all-
gemeineren Satz aus:
Wenn ein System von m Gleichungen

FuX,+ FeXo+ -+ F o X, =0 (=12,..,m)
vorgelegt ist, in welchem die Coefficienten Fyy, Foa, . . ., F, 1) gegebene
Formen von n Verdnderlichen und X,, X,, ..., X_q) m") zu bestimmende

Formen sind, so besitzt dasselbe stets eine endliche Zahl m® von Liosungs-
systemen
X1 = Xu, X2 = ng, < v ey X 1 = Xm(l)s (s-—=1,2,...,m(2))

m

derart, dass jedes amdere Losungssystem in die Gestalt
Xz == .A, Xu + A2 ng + »e + Am(2) le@) (Z= 1,2,...,m‘1))

gebracht werden kann, wo A,, A,, ..., A (o ecbenfalls Formen der
n Verdanderlichen sind*).

11
Die Endlichkeit der Formen mit ganzzahligen Coefficienten.

Die simmtlichen bisher abgeleiteten S#tze beruhen wesentlich anf
dem Theoreme I des vorigen Abschnittes. Waihrend wir dort die in
den Formen auftretenden Coefficienten als Zahlen eines beliebigen
Rationalititsbereiches annahmen, so wollen wir nunmehr den Fall in
Betracht ziehen, dass dieselben durchweg ganze Zahlen sind. Dem-
entsprechend lasst sich jenem Theoreme I eine weitergreifende Fassung
geben, welche dasselbe auch fiir Anwendungen auf zahlentheoretische
Untersuchungen geeignet macht und, wie folgt, lautet:

Theorem II. Ist irgend eine nicht abbrechende Reihe von Formen
F,F, F,,... mit ganzzahligen Cocfficienten und von beliebigen
Ordnungen in den n homogenen Verinderlichen z,, z,, . . ., Z; vorgelegt,
so giebt es stels eine Zahl m von der Art, dass eine jede Form’jener
Reihe sich in die Gestalt

F=A,F‘+A2F2+--.+A,,,‘Fm
bringen lasst, wo A,, A,, ..., An ganzzahlige Formen der nim-
lichen n Veréinderlichen sind.

Wie man sieht, wird hier im Unterschiede zu der fritheren Fassung
des Theorems verlangt, dass in gleicher Weise wie die gegebenen
Formen F,, F,, F,,... auch die bei der Darstellung zn verwenden-
den Formen 4,, 4,, ..., A, Formen mit ganzzahligen Coefficien-
ten sind.

¥} Dieser Satz ist fir ein e nicht homogene Veridnderliche vou L. Kronecker
in seinem Beweise fir die Endlichkeit des Systems der ganzen algebraischen
Grissen eimer Gattung zor Geltang gebracht; vgl, Crelle’s J. Bd. 92, 8. 18.
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Die zum Beweise des Theorems I angewandte Schlussweise reicht
zum Beweise des Theorems I; nicht mehr aus. Denn das friihere
Verfahren bernht darauf, dass wir die Grade der Formen F,, F,,. ..
in Bezug auf die eine Verdnderliche z, durch geeignete Combination
mit der Form 7, unter die Ordnung » von F, herabdriickten. Sollen
hierbei keine gebrochenen Zablen eingefithrt werden, so muss der
Coefficient von z7 in F; nothwendig gleich der positiven oder negativen

Einheit sein, was im Allgemeinen nicht der Fall ist und auch durch
lineare ganzzahlige Transformationen der Verdnderlichen nicht immer
erreicht werden kann. Es bedarf daher zum Beweise des Theorems II
einer neuen Schlussweise und durch diese gewinnen wir offenbar
zugleich fiir Theorem I einen zweiten Beweis.

Wir bezeichnen allgemein mit f;, die von der Verdnderlichen
2, freien Glieder der Form F,; sind dann alle Formen der unend-
lichen Reike f,, f, fs, - . - identisch Null, so setzen wir

Fs(l)= Es; (S‘—":'192732 .. °)

im anderen Falle sei f, die erste von Null verschiedene Form der
Reihe f,, fa, fss - - -, ferner fz die erste Form derselben Reihe, welche
nicht einem Producte von der Gestalt a,f, gleich ist, worin aq,. eine
ganzzahlige Form der Veriinderlichen 2, , z,, . . ., 2, bedeutet; f, sei
die erste Form jener Reihe, welche sich nicht in die Gesalt a,.f, + asfs
bringen lisst, wo @, und b; wiedernm ganzzahlige Formen vop
Xy, %oy e« -y Tn sind und in dieser Weise fahren wir fort. Ware nun
unser Theorem II fiir den Fall von » — 1 homogenen Verinderlichen
bereits bewiesen und beachten wir, dass in der gewonnenen Formen-
reihe f,, fz, fy;, .- keine Form durch lineare Combination aus den
vorhergehenden Formen erhalten werden kann, so folgt, dass diese
Formenreihe nothwendig im Endlichen abbrechen muss. Es sei dem-
gemiss f; die letzte Form dieser Reihe, so dass stets

fs = Gusfo + agsfg +-- A a2sfa = L(fas fg>--51), (s=1,2,3,...)

gesetzt werden kann, wWo dus, Ggs, . - -, @2 ganzzahlige Formen von
Zyy Tpy o - oy Xo— sind. Bilden wir nun die Ausdriicke

FO =F, — 1,(Fa, Fg, ..., ), (s=1,2,3,...)
so sind dies Formen der n Verinderlichen #,, ,, ..., #,, von denen
jede die Verinderliche z, als Factor enthilt. Wir bezeichnen all-
gemein mit z, /@ diejenigen Glieder der Form F®, welche lediglich
mit der ersten Potenz von z, mulfiplicirt sind und betrachten die
Formen £f,®, 1,0, f;®, ... der # — 1 Verdnderlichen 2,, %,,. .., Za-1.
Verschwinden diese Formen sﬁmmﬂiqh , so setzen wir

FP=F", (s=123,..).
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Ist dagegen jede Form der Reihe f,0, £,(), £, .. eine lineare Com-
bination der Formen f,, fg, . . ., f1, wie folgt

f=allfetafifst -+ aRA=T" (fos fose-0ofi)y  (5=1,2,3,..))

so setzen wir

FO = FO _® (@nFoy 2uFpy. . ., 2aF).

In jedem anderen Falle sei £{}) die erste micht durch lineare Combi-
nation aus fa, f3,..., f2 hervorgehende Form der Reihe £,®, £, £,
ferner sei f, (a) die erste Form dieser Reihe, welche keiner linearen
Combxnatmn der Formen f, fz,.. -, fa, [, ((11)) gleich ist and entsprechend
f ) die erste nicht durch lineare Combination von fa, fg, -+, f2, £y, £, ;(’})
hervorgehende Form der niimlichen Relhe Die so entstehende Formen-

reihe fo, fo, - - -5 f2, Fsds F5ths Fy)s - - - bricht unter der vorhin ge-

machten Annahme nothwendig im Endlichen ab, und wenn fzgg die
letzte Form der Reihe bezeichnet, so finden wir stets

fs“):: l_(f} (faa oy - s 1 fa(lb fig((xl)): * 2 2.((11)))’ (6=1,2,3,.. )

wo I!¥ einelineare homogene Function jener Formen bedeutet, deren Coeffi-
cienten selber ganzzahlige Formen der n—1 Verinderlichen 2, , z,, ..., 25—
sind. Setzen wir daher

2 1 1 1 1

so besitzen die so entstehenden Formen F,,@) der # Verinderlichen
%y, Zyy o - ., &p sdmmtlich den Factor 2. Wir bezeichnen demgemiss

allgemein mit 2 @ diejenigen Glieder der Form F @), welche lediglich

mit der zweiten Potenz der Verinderlichen z, multiplicirt.sind und
betrachten die Formen f£®, £,@, f®, ... der 2 — 1 Verinderlichen
Xy Zoy...,Zn—y. Sind diese Formen nicht s‘émmﬂich Null oder lineare

Lomhmatlonen der Formen fo, f3, ..., fi, f o1 fad FUPRRRE f. 1&13, so be-
zeichne £{) die erste micht in dieser Weise durch lineare Combination
entstehende Form Jener Reihe; desglemhen sei £ 5 die erste micht
durch fo, fgy++ -5 fa, faﬂh f((ll))y SRRT 3,(1)7 fa@) lmea'r darstellbare Form
in derselben Reihe. Das in dieser Weise eingeleitete Verfahren muss

wiederum nach einer endlichen Anzahl von Wiederholungen abbrechen,
vorausgesetzt, dass unser Theorem II fiir den Fall von » — 1 Ver-

anderlichen richtig ist. Bezeichnet demgemiiss f,3) die letzte durch
jenes Verfahren sich ergebende Form, so wird stets

2 2 1 «a 2 b3 2 ‘
; “ 3( )(fayfﬁy “re flzfaﬂhf,s{'iib'* *'If 1))2&:{3)): é(g;’ﬂs' " (}) (8“::2 2 31*’"}
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wo @ eine lineare homogene Function bedeutet, deren Coefficienten

selber ganzzahlige Formen von z,, ,, ..., #»—; sind. Setzen wir daher
k3 2 2 2 1 (1) ¢

E(S) _ R( )“”" l‘(, ) (qua7 szﬂ’v . .,an),,mnF((l)),anﬁa), ’xﬂF (]3 s

2 2 2
Fi(z)» Fﬁ(a)» F;_((z))) (s=1,2,3,..),

so besitzen die so entstehenden Formen F® simmtlich den Factor

z3. Wir bezeichnen wiederum allgemein mit x5 £, diejenigen Glieder
der Form F/®, welche mit keiner hoheren als der dritten Potenz
von , multiplicirt sind und gelangen so zu einer Formenreihe
(8, 8, ¥, . .., welche in entsprechender Weise einer weiteren
Behandlung zu unterwerfen ist. Es ist klar, wie die fortgesetzte
Wiederholung des angegebenen Verfahrens zu der folgenden Formen-
reihe fiihrt

faf(ﬂfz); f((ig): v vy z%%: f‘f«):h f5>(¢)’ s ey zg'?); sty e
wo %, 7, ... gewisse ganze positive Zahlen bedeuten und keine der auf-
tretenden Formen einer linearen Combination der vorhergehenden
Formen gleich ist. In Folge des letzteren Umstandes muss auch jene
Reihe im Endlichen abbrechen, vorausgesetzt, dass unser Theorem II
fiir den Fall von » — 1 Verinderlichen richtig ist. Wir bezeichnen

die letzte Form jener Reihe mit fi(s) und zeigen nun, dass jede Form

in der urspriinglich vorgelegten Formenreithe F,, F,, F,, ... einer
linearen Combination der Formen

(8) F((’g): ‘;(72)7 F}.ﬁft))’ F((Q); Fﬁ({’))) Fz{'t), .. F‘("’J), F(?:g): . Fzﬁi’%
gleich wird. Ist nidmlich ¥, irgend eine Form der urspriinglich vor-
gelegten Formeunreihe und 7 die Ordnung dieser Form in Bezug auf
die Verinderlichen z,, z,, . . ., Z», s0 betrachten wir die Gleichungen

Fi) = Fin — 1o,
FD = Fir- __ -0,

F. z(l) = F, s — ls )

wo [, L=, .., I, lineare Combinationen der eben vorhin an-
gegebenen Formen (8) sind. Da ferner die Form F,#+Y eine homogene
Function von der Ordnung » ist und in Folge ihrer Bildungsweise
durch 27t! theilbar ist, so ist sie nothwendig identisch gleich Null
und auns den obigen Gleichungen folgt, dass auch F, eine lineare Com-
bination der vorhin angegebenen Formen (8) ist. Diese Formen (8)
ihrerseits sind nun aus den Formen

Foas Fgarse- o3 Fyamys iy Fgiarseees Fayse s Fotyy Fars -+ 5 F
durch' lineare Combination entstanden ound es ist daher offenbar
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m == 2@ eine Zahl von der Beschaffenheit, wie sie unser Theorem II
verlangt. Das Theorem II ist mithin fiir # Veriinderliche bewiesen,
unter der Voraussetzung, dass dasselbe fiir » — 1 Verfinderliche gilt.
Es bedarf jetzt noch des Nachweises, dass das Theorem II fur
Formen ohne Verinderliche d..h. fiir eine nicht abbrechende Reihe
von ganzen Zahlen ¢, ¢, ¢;, .. . gilt. Um diesen Nachweis zu
fithren, nehmen wir an, es sei ¢, die erste von Null verschiedene Zah!
der Reihe; es sei ferner ¢, die nichste Zahl der Reihe, welche nicht
durch ¢, thellbar ist. Wir bestimmen dann den crrossten gemeinsamen
Theiler ¢,, der beiden Zahlen ¢, und ¢, ; derselbe ist Jedenfalls kleiner
als der absolute Werth von ¢,. Wenn es nun noch eine Zahl ¢,  in
jener Reihe giebt, welche nicht durch ¢y, theilbar ist, so bestimmen
wir den grossten gemeinsamen Theiler ¢, .. der beiden Zahlen ¢, .-
und ¢,» und es ist dann ¢, ., kleiner als ¢,.. Auf diese Weise
ergiebt sich die Zahlenreihe ¢,, €uu, Cupp”, - - -, in welcher jede Zahl
kleiner ist als die vorhergehende. Eine solche Reihe bricht nothwendig
im Endlichen ab und es sei ¢, = die letzte Zahl jener Reihe.

Diese Zahl ist der grosste gemeinsame Theiler der Zahlen ¢ , ¢, ...,6,
und es lassen sich daher ganze positive oder negative Zahlen a,a,..., a""

derart finden, dass
Copi o) = @6, '€, A+« -+ a¥e

wird. Da andererseits jede Zahl der urspriinﬂlich vorgelegten Reihe
€15 €gy G55 - - . e€in Vielfaches der Zahl ¢, ,  » ist, so wird m = u®
eine Zahl von der Beschaffenheit, wie s1e unser Theorem II verlangt.

Aus dem eben bewiesenen Theoreme lassen sich ohne Schwierig-
keit alle diejenigen Sitze entwickeln, welche den in dem ersten Ab-
schnitte aus Theorem I abgeleiteten Sitzen entsprechen. Wir wollen
jedoch in dieser Richtung die Untersuchung nicht fortfiihren, sondern
uns im Folgenden lediglich auf die Behandlung solcher Fragea be-
schranken, welche in den Wirkungskreis des Theorems I fallen.

IIL.
Die Gleichungen zwischen den Formen beliebiger Formensysteme.

Wir kniipfen an die Entwickelungen in Abschnitt I an und denken
uns demgemiss im weiteren Verlaufe der Untersuchung die Coefficienten
der in Betracht kommenden Formen nicht speciell als ganze Zahlen,
sondern als irgend welche Zahlen eines beliebigen Rationalititsbe-
reiches.

Ist der Modul (Fy, F,, ..., F, ) vorgelegt, so erhalten wir alle
iibrigen Formen dieses Moduls d. bh. alle nach demselben der Null
congruenten Formen, wenn wir den Ausdruck

Mathematische Annalen. XXXVI. 32
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AF 4+ A, Fy+ -+ 4,0 F

bilden und die Ordnungen der Formen 4,, 4,, ..., 4, q) so wihlen,
dass die Producte 4, F\,, A, F,, ..., 4 1y F, a simmtlich von der
nimlichen Ordnung in den Veriinderlichen sind und ihre Summe folglich
eine homogene Function darstellt. Es werden nun zwel verschiedene
Formensysteme A4, 4,,..., 4 4 uwnd B, By, ..., B ) die nim-
liche Form des Moduls liefern, wenn

A1F1 + Aze + "’+ Am(l) Fm(1)=B1F1 + Bze + + -Bm(l) Fé«(l
oder
(A1""B1)F1 + (Az "“'Bz)Fz + - + (Am(l) “"Bm(l))Fm(l) =0

wird d. h.: wir erhalten aus dem Formensysteme A4,, 4,, ..., 4

m

alle iibrigen zu der nimlichen Form des Moduls fiihrenden Systeme
B, B,, ..., B g mittelst der Formeln

B=4+ X, B,=4,+X,,.., Bm(l) = Am(l) + Xmil)a
wo X, X,,..., X @) irgend ein Lésungssystem der Gleichung
9 X +FX+ -+ FagX,n=0

bedeutet. Um daber eine griindlichere Einsicht in die Structur des
vorgelegten Moduls zu erhalten, ist eine Untersuchung der letzteren
Gleichung nothwendig, wo dann Fy, F,, ..., F () als die gegebenen

Coefficienten und X, X,, ..., X ) als die gesuchten Formen zu

betrachten sind. Nach den Entwicklungen in Abschnitt I besitzt eine
solehe Gleichung eine endliche Zahl m® von Losungssystemen

X, = 1(:)) X, = Fz(:): T Xm(i} = F,iﬁ)s (s=0L2,...,m®)
derart, dass jedes andere Losungssystem sich in die Gestalt
10) X, = AP FP+ AP FQ+ -+ Aln Flla (t=1,2,...m")

bringen lisst, wo A, Ag‘) sy Agzz) Formen der namlichen Ver-
dnderlichen z,, 2,, ..., z, sind. Unter diesen m® Losungssystemen
moge iiberdies keines vorhanden sein, welches aus den iibrigen durch

lineare Combination erhalten werden kann. Veréindern wir nun in den
Formeln (10) die Formen 4V, 40, .., 4%, so gelangen wir dadurch

m
nicht immer nothwendig zu einem anderen Ldsungssystem der Glei-

chung (9), es werden vielmehr zwei verschiedene .Formensysteme
A?, Af, .oy A(l()z) und Bﬁl}, Bg’, e v ey B‘;%g) dann das nimliche

w

Losungssystem X, X,, ..., Xn liefern, wenn
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(1) (1) 1) @) (1) (1
A’l El +A2 Ft2 +‘“+Am(2)F

tml®

M ) 4 BO 0 1) g
y=B, 'F,tl + B(2 ‘Ft(.‘a +-- 4 Bm(2)th(2)

(t=1,2,...,m®)
oder

(4P —BY) FY 4 (40— BY) F 4+ (4o — Byla) Fim =0
(t=1,2,...,m0)

wird und auf diese Weise werden wir auf die Untersuchung des Glei-
chungsystems

(1) FPXP+ FP X -+ Fla X =0 (t=12,...,m")

m

gefishrt, wo F, FY

crr Lo s os 1?’:2(2) die gegebenen Coefficienten und

X?), Xél), ey ,(,:()2) die zu bestimmenden Formen sind. Das erhaltene

Gleichungssystem (11) heisse das aus (9) ,,abgeleitete Gleichungs-
system*.

Es sei hier besonders hervorgehoben, dass bei der Bildung des
abgeleiteten Gleichungssystems ein derartiges volles Formensystem zu
Grunde gelegt wird, in welchem keine Losung durch lineare Combi-
nation der iibrigen Losungen erhalten werden kann. Die Zahl und
die Ordnungen der Losungen eines solchen Losungssystems sind, wie
man leicht erkennt, vollkommen bestimmte und auch die in den
Ldsungen auftretenden Formen sind im wesentlichen bestimmte, insofern
jedes andere Losungssystem von der ndmlichen Beschaffenheit dadurch
entsteht, dass man die Losungen des anfinglichen Systems mit anderen
darin vorkommenden Lésungen von gleichen oder niederen Ordnungen
linear combinirt. Zufolge dieses Umstandes ist auch das abgeleitete
Gleichungssystem durch das urspriingliche Gleichungssystem in ent-
sprechendem Sinne ein bestimmtes.

Die Coefficienten des abgeleiteten Gleichungssystems bestehen,
wie man siebt, aus den Formen der Ldsungssysteme der urspriing-
lichen Gleichung und wir erhalten somit die zwischen den Losungen
der urspriinglichen Gleichung (9) bestehenden Relationen durch
Aufstellung der Lésungen des abgeleiteten Gleichungssystems (11).
Wir bestimmen demgemiss fiir das letztere das volle System von
Lésungen
X0 —F®

1s?

®__ »®
XO=F

2s?

4R (2)
c e ey Xm(2)== m(2) s (s_~=1,2,...,m(3))

derart, dass keine dieser Losungen durch lineare Combination der
ibrigen erhalten werden kann und fiiberdies jedes andere Losungs-
system die Gestalt

32%
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@ _ 4® 5@ @) p(2) 2 :
Xt """‘AI Ftl + A2 Fpe +-- Aing‘é‘) Fu}(?’) (t=1L2,...,m®)

tm

annimmt, wo AP, 4P ..., AP irgend welche Formen sind. Der
letztere Ansatz fithrt auf das Gleichungssystem

(12) FRXP+F XD 4 -+ Flg X =0,  (t=1,2,.:.,m®)

@

wo F'¥ Ft(:) yeesy 17'33(3) die gegebenen Coefficienten und le, X7y

13 B
XS{);»,) die zu bestimmenden Formen sind. Dieses dritte Gleichungssystem
(12) ist aus dem zweiten Gleichungssysteme (11) in der niimlichen
Weise abgeleitet, wie das zweite Gleichungssystem aus der urspriing-
lichen Gleichung (9). Durch Fortsetzung des eben eingeschlagenen
Verfahrens erhalten wir eine Kette von abgeleiteten Gleichungssystemen,
in welcher stets die Zahl der zu bestimmenden Formen irgend eines
Gleichungssystemes {ibereinstimmt mit der Zahl der Gleichungen des
darauf folgenden Gleichungssystems.

Zur einheitlicheren Darstellung der weiteren Untersuchungen ist
es nothig, an Stelle der einen urspriinglichen Gleichung (9) ein be-

liebiges Gleichungssystem von der Gestalt
(18) FuX i+ FueX,+- -+ F a0X =0 (=12,..,m)

zu setzen. Die Anwendung des oben angegebenen Verfahrens gestaltet
sich dann zu einer allgemeinen Theorie solcher Gleichungssysteme, deren
Kern in dem folgenden Satze liegt:

Theorem III. Ist ein Gleichungssystem von der Gestalt (13) vor-
gelegt, so fihrt die Aufstellung der Relationen zwischen den Losungen
desselben zu einem zweiten Gleichungssysteme von der ndmlichen Gestalt;
aus diesem zweiten abgeleiteten Gleichungssysteme entspringt in gleicher
Weise ein drittes abgeleitetes Gleichungssystem. Das so begonnene Ver-
fahren erreicht bei weiterer Foriselzung stets em Ende und zwar ist
spiitestens das w* Gleichungssystem jener Ketle ein solches, welches keine

Losung mehr besitzt.
Der Beweis dieses Theorems ist nicht miihelos; er ergiebt sich aus

den folgenden Schliissen.

Unter den Gleichungen des vorgelegten Systems konnten einige
eine Folge der iibrigen sein, indem sie von jedem Formensysteme be-
friedigt werden, welches diesen letzteren Gleichungen gentigt. Nehmen
wir an, dass soleche Gleichungen bereits ausgeschaltet sind, so ist,
wenn iiberhaupt Losungen vorhanden sein sollen, nothwendig, die
Zahl m der Gleichungen des Systems (13) kleiner als die Zahl m®
der ‘zu bestimmenden Formen und ausserdem sind die m-reihigen

Determinanten



(14)

Ueber die Theorie der algebraischen Formen. 493

'Dixie"'im = . . LIRS
Fmil Fmt«; ¢t sz‘m

WO 4y, %,y - . .5 Iy irgend m von den Zahlen 1,2,.,., m® bedeuten,
nicht simmtlich gleich Null. Es sei etwa D = Dys...,, eine nicht
verschwindende Form von der Ordnung » und zwar moge diese Deter-
minante D so ausgewdhlt sein, dass die Ordnungen der iibrigen Deter-
minanten in den Verdnderlichen z,, z,, ..., 2, nicht grosser als »
sind. Wir denken uns ausserdem eine derartige homogene lineare
Substitution der Verinderlichen z,, #,, .. ., z, ausgefiihrt, dass dadurch
der Coefficient von 27 in D einen von Null verschiedenen Werth erhzlt.
Das Gleichungssystem (13) besitzt offenbar folgende Losungen

Xl =.Dm+1,2,...,m, vee Xm——:.D] R e m+1 ’ Xm+1 =D X7n.+.2 =O, wrey X1lt(1)
X 15 -Dm—i-2*2,---,m 2 X =D 1,2, ey~ m42 3 Xm+1 = 0 Xm+2 = D X w1l =

- . . . . . . . .

m

X,=D,0 ;. o Xu=D,,

Ist nun eine Lbsung X,, X2, .+« X_g) des Gleichungssystems (13)

vorgelegt, so lisst sich durch Combination mit der ersten Losung in
(14) aus jenem Losungssystem X, X,, ..., X ;) ein anderes ableiten,
in welchem an Stelle der Form X, eine Form steht, deren Grad in
Bezug auf die Verdnderliche 2, kleiner ist, als die Ordnung 7 von .D
angiebt, wihrend die Formen X, 15, Xinys,...,X () ungeindert bleiben.
Die so erhaltene Losung lisst sich wiederum mit dem zweiten Losungs-
system in (14) derart combiniren, dass an Stelle der Form X, ., eine
Form tritt, deren Grad in Bezug auf die Verinderliche z, kleiner als
r ist und wir erhalten durch entsprechende Verwendung der iibrigen
Losungen in (14) schliesslich eine Losung =,, =,, ..., = ), wo die
Formen Z,ii, Zmte, ..., =, In Bezug auf z, von einem niederen
Grade sind als die Zahl r angiebt. Wir wollen zeigen, dass dann
auch die Grade der Formen =, =,, ..., =, beziiglich der Verinder-
lichen z, kleiner sind als ». Zu dem Zwecke multipliciren wir die

Gleichung _
Ftl:'j_ + -—3 + + tm(D) —m(l) =0

mit der auf das Element F,, beztiglichen m — 1 reihigen Unterdeter-
minante von D und summiren alle anf diese Weise fir {=1,2,...,m
entstehenden Gleichungen. Wir erhalten so eine Relation von der
Gestalt
D=+ Dy 2y i1, eesm =kt D1 2 e et 2, m -m+2+D1,2, Ve =) =0,
(6=1,2...,m)

syt —1,

=o,

(1)’ Xm—i—l -—'O Xn‘_'_‘)——o X 1) _.__D
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und da die Ordnungen der hier vorkommenden Determinanten nicht
grosser sind als die Ordnung » von D, so sind in der That die Grade
der Formen =; in Bezug auf z, simmtlich kleiner als 7.

Der eben bewiesene Umstand rechtfertigt den Ansatz

(15) :': == &1 o1 + §s2$:-2 + e + gsr: (3=1:27-”: m(l))

WO £51, Es25 « + -, Esr Formen bedeuten, welche nur die » — 1 Ver-
dnderlichen z,, 2,, . . ., Zy,—; enthalten. Wenn wir diese »® Ausdriicke
=) Z2y - 0y Sy aus (15) beziehungsweise fir X, X,, ..., X ¢ in
die urspriinglichen Gleichungen (13) eintragen, linker Hand mnach
Potenzen von z, ordnen und die mit gleichen Potenzen von z, multi-
p}icirten Ausdriicke einzeln gleich Null setzen, so erhalten wir eine
gewisse Anzahl g von Gleichungen zur Bestimmung der m®r Formen

s 819s -y E,0),- DBezeichnen wir der Kiirze halber die letzteren
Formen mit £, §,, ..., §,q), sp erhalten jene g Gleichungen die Gestalt

(16) o,8 495+ -+ P, 1) 5”(1) = 0, (t=1,2,...,0)
wo die Coefficienten @, @2, ..., P, 1) bekannte Formen der n — 1

Veriinderlichen z,,%,, ..., %,—1 sind. Es sei nun

g = qﬁ, g = 90;?; e Sy = ‘Pﬁ()x)., (s=1, 2:"'751‘(2))
ein volles Losungssystem von (16) und zwar ein solches, in welchem
keine Losung durch lineare Combination der {ibrigen Losungen erhalten
werden kann. Aus einer jeden Losung dieses Losungssystems lisst
sich vermoge (15) eine Losung der urspriinglichen Gleichungen (13)
zusammensetzen. Die so erhaltenen Lﬁsungen der Gleichungen (13) seien

a7 =, =00, 5, =00, ..., Z =0, . (s=12,...,u®)

Durch Zusammenfassung der bisher angestellten Ueberlegungen
gelangen wir zu dem Ergebniss, dass eine jede Losung X, X,,..., X
der urspriinglichen Gleichung (13) sich in die Gestalt

1 1 {1 1
X, =aPo) a0+ ..+ a‘(z)d’(l)(z) + AP Dy,
(1)
+ A ‘Dm+2 2,- + + Am(l)-—-m 'Dm(l) 2+

- - . - -

(1) 4, (1) 1) 4y(1 1
Xm -—-al ¢ -{—-a( )(p )2+ +a‘u(2) i‘(z)—!-A( )D

1,2, m—~1, m+1

1 {1)
+ ‘A' ‘D e m—1, M2 + + Am(l)-m'pl,2, »eey m——l,m(l) L4

Xy =000, Fad ol 2-{— e @), o+ AV D40+ -0,

X, = "’¢:,:;2,+a‘*’ ¢f,:2,,22+ +a @;cb‘ ) 2y<e>+0+A“’D+ +0

. - » - - -

Xmiz)—aa)q’m n+ a"’¢f§m2+ + P o +0+ O+ T b

)~ m

-
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(19)
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bringen lasst, wo a“) , a(;), - (2) Formen der n—1 Veriinderlichen

1 .
Zyy Loy oo ey Ly—y und A“ Ag) 5 .A(1 —,, Formen der » Verander-
lichen z,, 2,,...,2 smd. Insbesondere miissen daher auch die Losungen

(1) 1)
X, = 2,00, X, =2.00,..., X 0y=2,0%, (=142,...,49)

1s?

in obiger Gestalt darstellbar sein und wir setzen dem entsprechend

w__ (2) (1) @ H® (@) @
Ly q)l s (bll +et wﬂ(z)s(b @ + YA Dm-{—l, 2y eyttt +ee XadV)—i,s Dm(l), 2, ey ?

» . - » » . » - . - - [}

1) (2) (1) 1) (2)
n (Dms d)ml + + z/),u(z)s ® ,u( )+ Z 1 3200, =1, m-H1 + ot
+ xm(l) —m, 8 ‘Dl, 2, sergit~1, m(l) b4
1) (3) (1) 2 (1) @)
nq)m-]-ls (D -1, 1+ +¢y(2)s¢m+1 ,u(2)+xls ‘D+O+'”+O

(1) PO ol <2) & %

O @) @
z, O, =¥, + +¢u(2)s ) +0+0+ +xmm e /5
(s=1,2,..., u4®)

wo die Formen zpﬁ’ e ey zbf()g)s und in Folge dessen auch die Formen

xﬁ), ceey Zmli)—m Formen sind, welche nur die » — 1 Verdnderlichen

Zyy %y, .« oy Lay enthalten.

Die Losungen (14) und (17) bilden zusammengenommen ein volles
Losungssystem der urspriinglich vorgelegten Gleichung (13) und die
Aufstellung der zwischen diesen Losungen bestehenden Relationen fiihrt
zu einem Gleichungssystem von der folgenden Gestalt

1) v o xW (1) 1)
cbl]_ X1 + T + (D ”(2) ‘4/,(2) + ‘Dm+l,2,.w’m + + Dm(l) 2y Ym(l)—. " 0?

- - . » . » - . - - -

1) (1) { (1)
(bmi X + +¢ )F,(‘Z) (2) + 'D1 2,00~ 1, mF1 Y + .
+'D1,2,---,m~—1 ) Y m)—m = =0,

Oy KO 0 o K+ D E 40440 =0,
¢§Z’.;-z 1X§n+'“+¢§;§+2mz} (2)+0-‘-D Y0 =0,
(P(l Xm + + (1)u(2) ,(‘1{?2) +0 +- "+D i:i)l)_m =0,

wo X, ..., X%, Y¥, ..., ¥ih_, die zu bestimmenden Formen
sind.



496 Davio Hitserr,

Hierbei ist besonders hervorzuheben, dass moglicherweise einige
unter den Ldsungen (14) und (17) gleich linearen Combinationen der
iibrigen Losungen sind und in Folge dessen das Gleichungssystem (19)
nicht in dem oben definirten und durch Theorem IIT geforderten Sinne
aus (13) abgeleitet worden ist. Um das Gleichungssystem (19) in
das aus (13) abgeleitete Gleichungssystem umzuwandeln, bedarf es
also noch einer Reduction des Gleichungssystems (19), welche in der
That spaterhin ausgefiihrt werden wird.

Das Gleichungssystem (19) hat, wie aus (18) hervorgeht, die

Lésungen
W _ 40 - @ ®»_ .
X =, —a, X; = v Xy =10, » X3 zu ,
©
cec2 Ym(l)--m _ x ¢(1)—-m,1’
Hy__ @ W__e @) 8 @
X§ )=¢12) X )""‘1!’ }-xm ’X((Z) 7/’,,(2)2 Y )— Xio >
; @ @)
(20) » Y= Xn®_pr 22

O__ @ ®__.@ @ @ W__,®
X, —1/’( y XD =00 e Xl = %(2),,@——%, Y, ——-x“,m,
*

)
A I A N

Ist jetzt irgend eine Losung X[, .. X(l) b, Y, .., Y(l()l)__m

b/

des Gleichungssystems (19) vorgelegt, so lasst s1ch aus derselben durch
Combination mit den Losungen (20) eine andere Losung

1 1 1) (1) @) ¢
XP =g, .., Xy =0, YV=H", . Y% =H%_,

W “

erstellen, wo .+, & (3 Formen sind, welche nur die % — 1 Ver-
herstellen, wo £, Eh F d, welch d 1V

dnderlichen z,, #,, . . ., Z,—1 enthalten. Setzt man diese Losung
‘g’f’ y ooy g“) HY, e Hm(z) —n In die letzten m® — m Gleichungen
von (19) ein, so sieht man leicht ein, dass die Formen H{ ) ety HO

m(l) ~—m

identisch Null sind und wir erhalten somit zur Bestimmung der Formen
gW,. ’éy(z) die folgenden Gleichungen

@mg‘” +ORED 4 - O B =0, ¢=1,2,...,m0)

Die Formen CD?I) , ¢£12), .. d)( )(z) enthalten die Verdnderliche z,

hochstens im Grade r — 1. Wenn wir daher in den-letzteren Glei-
chungen linker Hand die Coefficienten der Potenzen von z, einzeln
gleich Null setzen, so ergiebt sich das Gleichungssystem

@1) oRE) + o BV + - - - + ¢t =0, (@E=1,2,...,40)

wo sowohl die Coefficienten wie die zu bestimmenden Formen lediglich
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die n—1 Veranderlichen z,, x,,..., %, enthalten. Dieses Gleichungs-
system (21) ist, wie man sieht, das aus (16) abgeleitete Gleichungs-
system. HEs selnun

{1 2) (1) (2) (1) ?
g == ¢13’ gz = ¢23, o oy (2) == ¢ (2)5 (s = 1, 2’ .y !L(3))

ein volles Losungssystem von (21) und zwar ein solches, in welchem
keine Losung durch lineare Combination der iibrigen Losungen er-
halten werden kann.

Fassen wir die letzteren Entwickelungen zusammen, so erkennen
wir, dass eine jede Losung des Gleichungssystems (19) sich in die
Gestalt

(1 (2) a® @) ( (2 @ .2
1 =a +:-ta (3 (pl (3) +4; )(7/)11)"' xﬂ)+A‘ Lt 2)+ o
A® 4@
+ 3)11)1 p(2> 4

XY =alell 4+ f()‘z»)% (3)+A(2)1/’21 + 48 @)

@ _ @
T4 0%,

. . . - . - - - . - - . - - » » - . » - - . (3

) @ @) @ @ @8 3 4@ @
X W 9 (2)1+ e %) (3)+A 4 W) +4:7 9 @) L
)
A,‘(m (’/’,,(2) e — )5

Y = 0 At 0 A AP AP+

®
+ A‘u(z)?‘l u®?

»

(22)

. - . . . - - - . . . - - - . - - 3 - -

y — 0 Feeet 0 + A(2) 12) + A@) (2)

m—m n(l) —1m,1 m(l)--m 2
L A® @
Tt Aot 00

. = (2) @)
bringen lisst, wo ai,..., a )

Tyy By« + oy Tux und AP, Afzz) Formen der # Veridnderlichen

Formen der % — 1 Verinderlichen

Xy, Ly, .« Zn sind. Insbesondere miissen daher auch die Losungen

2 2 1 2 1 1
XV=z,02, XV=2z,02, ..., X‘},)——Mf o, T=0,.., b4 -
(s=1,2,...,u®)

in obiger Gestalt darstellbar sein und wir setzen dementsprechend
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{2} {8) _(2) (B (2 (3) 2) 3 (3)
Ly®Pis —P15Pn + ";"'?l’“(g)& (u® (“l’ll "‘"xn)"}" +Z W@ s ly(??’

- - - L4 » . - . L] » - .

2) (3) 3 (2) (3)
Tu® @)= ¥, (2)1+ +Ye,9 (2),‘(3)’{'75 (2)1
&)} (2)
+ -2 (@) (2)“(2) -—x”)’
3) (2 (3) 2
0= 0 -t 0 T ey #3) s 1,A2)'

. ® @) ®) B
0= 0 ek 0 R Atz SOy
(S=1;2:'-')5"(3))7

(23)

wo die Formen 1/)@, oy ey und folglich auch die Formen

.., x(s()z) nur die Verinderlichen 2,, 2,, ..., 2,—1 enthalten.

Nach (22) bilden die Losungen (20) zusammengenommen mit den
Lésungen

1 2 1 2 (i 2 1 1
XV =g, XO=ohly o X =0, T=0,.., Yoy =0

(2 m—m

(3= 17 21 LI “(3))

ein volles Liosungssystem von (19) und die Aufstellung der zwischen
diesen Losungen bestehenden Relationen fithrt zu dem Gleichungs-
system

(2) 2) (2) (2) (2) (2) (2)
X( + +q)1,u(3) (3)+(¢11 "'"xﬂ) Y + +¢' (2) Y (2)““'0

. . - . » - .

P X @  x@ 4 e ) @ @
#(2)1X Tt P oeX et e, Yt +(’l’ o )Y@r"o

(24) (2) 2) @
2
0 A4+ 0 RN Y =0
oo @ (2) @) @
0 +-eet 0 +Zm(1)_m,1 Yo - +Zm(1)__,m’ @ Y#@)———O
o X,... X (2), P, ..,Y fé} die zu bestimmenden Formen
smd. Dieses Gielchungssystem (24) besitzt, wie aus (23) hervorgeht,
die Losungen
__ (3) @)__ 6 (7] (3)
X =iy, X WO Yoy Vi=nui, - Yﬂ(‘z} Xy
(25) - . - - - . . - - * » - - - . . * [ ] . - » -
(2) (3) @ (3) @__ .6 @ __ 6
XT=b oy 0 Xg= V@™ YT =2 62 ¥ =20 ,0r
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Ist jetzt irgend eine Losung X{,..., X %, Yo, ... f()zy des

Gleichungssystems (24) vorgelegt, so lisst swh aus derselben durch
Combination mit den Losungen (25) eine andere Losung ® .., £® )

HP, .. H(?‘()g) ableiten, wo £2, ..., &2 0 Formen sind, welche nur

die » — 1 Veranderhchen Zyy Loy + + oy Ln—y enthalten. Setzt man diese
Losung £2, ..., £@ Y H? ..., H? in die ersten u® Gleichungen von

«(?
(24) ein, so sieht man leicht, dass die Formen H®, . H(z(}z} identisch
Null sind und zur Bestimmung der Formen 5D .§( ©) erhalten wir
daher die Gleichungen

(26) @RE” + @FE + 0o g) 8 =0, (s=1,2,..,p0)

wo sowohl die Coefficienten, wie die zu bestimmenden Formen lediglich
die #—1 Verinderlichen z,, &, ..., Z,—1 enthalten. Dieses Gleichungs-
system (26) ist, wie man sieht, das aus (21) abgeleitete Gleichungs-
system.

Das volle System von Losungen des Gleichungssystems (24) lasst
sich zusammensetzen aus den Losungen (25) und aus Losungen von
der Gestalt

(2) @ @) (2 2y @)
X =50, .., X% =50, ¥ 5 X5 =0,

wo E2, ..., &2 - Losungen des Gleichungssystems (26) sind.

Denken wir uns das eben beschriebene Verfahren fortgesetzt, so
erhalten wir die Kette der Gleichungssysteme (13), (19), (24), .
und ferner zugleich die daneben laufende Kette der abgeleiteten
Gleichungssysteme (16), (21), (26) ... . Diese beiden Ketten von
Gleichungssystemen stehen zu einander in engster Beziehung, indem
das volle System von Losungen des z'*® Gleichungssystems in der
Kette (13), (19), (24), . . . sich zusammensetzen lisst aus den Losungen
von der Gestalt

(71 __ (#) (~-1__ (" (7—1) () (z—1) (=)
X 11"""xu7 ¢-,X(ﬂ} 1]’(,,) 3 Y "'""211;’ ’Y(ﬁ""ﬁﬁxﬂfﬂ-’i}l’

@D (@—1)__ (n) (@-1)__ () (=z-1)__ (@
X z[zl (@ T Xy(ﬂ) %(ﬂ) e T 1" = W@

#~—1) (ﬂ)
Y Wm0k ) mp

und den Losungen von der Gestalt

Xl{af—d) — giﬂ—«l) (a—q) — g{#—«l} Y{a-.n — 0

(m~1)
L (n) (a) ? Y

rect L a-y = 0,
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wo EU, L., §:‘;’)‘) Losungen des z'e® Gleichungssystems in der Kette

(16), (21, (26), ... sind. In dem Losungssysteme (27) bedeuten

() (7) (7} (7} v
Pir's e o o @ K2 Xy Formen der # — 1 Verinder-

lichen z,, #,, ..., Z,—1 und zwischen diesen Losungen (27) fiir sich
alleiy besteht, wie man leicht erkennt, keine Relation, d. h. das
Gleichungssystem

W —2,) Yoo+ P Y% — 0,

1 p,(”) ‘u(ﬂ)

{®) =) {7) (m)
“ e — . Y == 0
oy e BTt (=) V= 0

(7) (7) (7) = __
ALl Y 4 4 147 Yy(n) =0,
() @ 4 ... (@ @ __
% @1y, T Ly m Y = 0

besitzt keine Losung.

In den Gleichungssystemen (16), (21), (26), ... der zweiten Kette
handelt es sich lediglich um Formen, welche von der Verinderlichen
Z, frei sind. Nehmen wir daher an, das zu beweisende Theorem III
sei bereits fiir den Fall von n — 1 Veréinderlichen als richtig erkannt,
so folgt, dass in der Kette (16), (21), (26), ... spitestens an g — Ister
Stelle ein Gleichungssystem auftritt, welches keine Losung besitzt.
In Folge dieses Umstandes muss in der Kette (13), (19), (24), ...
spitestens an % — 1% Stelle ein Gleichungssystem auftreten, dessen
volles Losungssystem durch die Losungen von der Gestalt (27) er-
schopft wird; es ist dann das unmittelbar auf dieses folgende Glei-
ehungssystem d. h. spitestens das nt¢ Gleichungssystem der Kette
(13), (19), (24), ... von der Gestalt (28) und dieses Gleichungs-
system lisst seinerseits keine Losung mehr zu. Wir haben somit, unter
der Annahme der Richtigkeit des Theorems I1I fiir »—1 Verénderliche,
gezeigt, dass die Kette der Gleichungssysteme (13), (19), (24), ..
spitestens mit dem n'e® Gleichungssysteme abbricht.

In der Kette der Gleichungssysteme (13), (19), (24), ... wird
allgemein das zte Gleichungssystem dadurch erhalten, dass man fur
das (z — 1)*¢ Gleichungssystem in der oben beschriebenen Weise ein
volles System von Losungen bildet und dann die unbestimmten linearen
Combinationen dieser Losungen gleich Null setzt. Da nun im All-
gemeinen das bei unserem Verfahren sich ergebende volle Losungs-
system ein solches sein wird, in -welchem einige Losungen lineare
Combinationen der iibrigen sind, so ist das =zt Gleichungssystem
der Kette (13), (19), (24), ... nicht nothwendig zugleich dasjenige
Gleichungssystem, welches man erhilt, wenn man aus dem (m —1)sten
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Gleichungssysteme in dem von uns definirten und in Theorem 1II ge-
forderten Sinne das abgeleitete Gleichungssystem bildet. Aber es
bietet keine Schwierigkeit aus der gefundenen Kette (13), (19), (24), ...
die Kette der aus (13) abgeleiteten Gleichungssysteme zu gewinnen,
da wir hierzu offenbar nur nothig haben, in den Gleichungssystemen
der Kette (13), (19), (24),.. . alle diejenigen Formensysteme zu unter-
driicken oder durch lineare Combinationen der anderen Formensysteme
zu ersetzen, welche lediglich durch eben jene iiberfliissigen Losungen
bedingt sind. Diese Ueberlegung lehrt zugleich, dass die Zahl der
Gleichungen und der unbestimmten Formen in den Gleichungssystemen
jener Kette (13), (19), (24), ... jedenfalls nicht vermehrt zu werden
braucht, damit aus dieser Kette (13), (19), (24), . .. die Kette der
aus (13) abgeleiteten Gleichungssysteme entstehe und da die Kette
(13), (19), (24), . .. den obigen Entwickelungen zufolge spitestens
mit dem n'®® Gleichungssysteme abbricht, so hat die Kette der aus
(13) abgeleiteten Gleichungssysteme umsomehr diese Eigenschaft.
Damit ist unser Theorem III fiir Formen von % Verinderlichen be-
wiesen, unter der Voraussetzung, dass dasselbe fiir den Fall von n — 1
Verdnderlichen gilt.

Um zu zeigen, dass Theorem III fiir den Fall n = 2 richtig ist,
nehmen wir an, es sei ein Gleichungssystem von der Gestalt

29) FuXi+FeXo+---+F, 0X,n=0 (¢=1,2,..,m)

vorgelegt, wo Fy;, Ty, .. . Ft o) bindre Formen der Verinderlichen

%y, Z, sind und es sei ferner
X=F, =F), .., X =F% (s=1,2,..., m®)

(D) s

ein volles Losungssystem von (29) derart, dass keine in demselben
enthaltene Losung eine lineare Combination der iibrigen Losungen
ist. Das aus (29) abgeleitete Gleichungssystem nimmt dann die
Gestalt an

(30) F(I) X(i) + -Ft%) X%l) + 4 F(I)(2) X(l()2)
und es ist zu zeigen, dass dleses Gleichungssystem keine Losung be-
sitzt. Zu dem Zwecke nehmen wir das Gegentheil an und verstehen

unter X{, X, .. X“()z) binsire Formen beziehungsweise von den

T l®)?

friedigen. Ueberdies mﬁgen diese Formen X{¥, X{% ..., X0 in
m

=0 (=12,..,m")

Ordnungen 7,,7,, .. welche jenes Gleichungssystem (30) be

eine solche Reihenfolge gebracht sein, dass

IS STy

wird und es sei endlich ] eine bindre Linearform, welche nicht in
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2, X" als Theiler enthalten ist. Bestimmen wir jetzt die Constanten
Cys G35+ vy € (g derart, dass die Formen
YO =XO fea " XP (5=2,3,..., m®)

saimmtlich durch I theilbar werden und setzen wir dann
(9)"“’1 (1)

(81) G =FP — a7 " FY — ¢t " F§ —+—¢ o % m .
m(®) tml2)
. t=1,2,... m®)
so is
GOXO L FOYP + FOYO - £+ FO_Y® 0

4 m(2) m(2)

(t=1,2,...,m(1))

und hieraus folgt, dass die Formen GY sammtlich durch ! theilbar
sind. Wir setzen dementsprechend

(32) G =1HY. (t=1,2,...,m0)
Hs geniigen nun die Formen
X, =69, X,=6%,..,X ,=G"

m(l) m(l)]_
und demnach auch die Formen
1 1
Xl = )(.1), X ‘2(1)a LAY} Xm = H")

w1
dem wurspriinglich vorgelegten Gleichungssysteme (29), woraus ins-
besondere folgt, dass auch die letztere Losung durch lineare Combi-
nation der obigen m® Losungen erhalten werden kann und da die

Formen H!Y beziechungsweise von niederen Ordnungen sind als die
Formen F}y, so ergeben sich folgende Formeln

W=F3 + AT+ -+ A GF o (=1,2,..,m0)

wo 4,, .A3, oA g gewisse bindire Formen bedeuten. Aus diesen
Formeln und den Formeln (31) und (32) erhalten wir unmittelbar:

Fg) (1}F(1) + A.(l) F(I) + + (1) F(l) (t — 1, 2’ cen m(ll)

w® " tmf®)?
wo AP, AN, ..., Ai:)z gewisse andere binire Formen sind d. h. anter

jenen m® Liosungen ist die erste Losung eine lineare Combination der
iibrigen Liosungen. Dieser Umstand ist mit der vorhin gemachten Fest-
setzung in Widerspruch und unsere Annahme, dass das Gleichungs-
system (30) eine Losung besitze, ist somit als unzulissig erkannt.
Damit ist das Theorem III fiir binire Formen und folglich auch zu-
gleich allgemein bewiesen.

Es wurde bereits oben dargelegt, inwiefern die Formen eines
vollen und keine fberfifissigen Liosungen enthaltenden Lisungssystems
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durch das gegebene Gleichungssystem festgelegt sind. Offenbar ist in
entsprechendem Sinne auch die Kette der abgeleiteten Gleichungs-
systeme eine wesentlich bestimmte.

Was inshesondere die Untersuchung eines Moduls (F,, F,, ..., Fy)
anbetrifft, so legen wir dabei die folgende ans den Formen des Moduls
zu bildende Gleichung

X+ X, 4 F FoX,=0
als erstes Gleichungssystem zu Grunde und die Aufstellung der Kette
der hieraus abgeleiteten Gleichungssysteme gewihrt dann, wie spater
ndher ausgefiihrt werden wird, einen weitreichenden Einblick in das
algebraische Gefiige jenes Moduls.

Zur Erliuterung unserer allgemeinen Kntwickelungen mégen
folgende Beispiele dienen. Der bereits oben in Abschnitt I behandelte
aus den 3 quadratischen Formen

F = 2,2, — 1,7,
Fy = z,25 — 42,
F, =x,0, — z;*
gebildete Modul (F,, F,, F,) fithrt zu der Gleichung
F X, + FX,+ F,X;=0.
Wie oben bewiesen wurde, lisst sich eine jede Losung dieser Gleichung
in die Gestalt
X, =2Y +27Y,,
X, =u,Y, + 2, X,
Xs=2,Y,+ 7Y,
bringen, wo Y,, ¥, quaternire Formen sind. Ks entsteht somit das
abgeleitete Gleichungssystem
2, Y, +2,Y,=0,
Zy :Yl -+ 2 :YQ =0,
z, Y, +2,Y,=0,
welches seinerseits keine Losung mehr zuldsst. Die Kette bricht also
in diesem Falle bereits bei dem 2t Gleichungssysteme ab.

Als zweites Beispiel diene der Modul (F,, F,, ..., F,), wo
F,, F,,... F, die ebenfalls bereits in Abschnitt I behandelten Formen
von der zweiten Ordnung in den 5 Verinderlichen z,, z,,..., 25 be-
deuten, Die Gleichung

FX, 4+ F,X,+ -+ FX =0
besitzt die dort angegebenem 8 Losungen und von diesen ist keine

gleich einer linearen Combination der iibrigen Losungen, wihrend
jede andere Losung dieser Gleichung sich aus jenen 8 Ldsungen zu-
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sammensetzen lisst. Die allgemeine Losung der vorgelegten Gleichung
ist daher
Xi= =z X4z Y, +zX,

Xy=—2,Y,—2, ¥, ‘Y, 2, Y+ Y

Xy=—2, ¥\ —2,Y,—23 X, — a3 Yy—uw, Yo+u, ¥y 42, ¥y
Xy= =¥, +z7, — 1z, ¥, —z, ¥ — 2, ¥,
Xy = z, ¥y 42, ¥, +a; ¥y +3, X
Xo= oy Yyt2, Yo—u, Y —a3 X,

wo Y,,Y,,... Y, beliebige Formen sind. Wir erhalten somit das
abgeleitete Gleichungssystem, wenn wir in den eben gewonnenen
Formeln die Ausdriicke auf der rechten Seite gleich Null setzen und
dieses abgeleitete Gleichungssystem seinerseits besitzt die folgenden
3 Losungen

Y=z, Yy=—u, Y= 0, Y=—m, Y=z, X=20
Y, =, . Y3= 0,
Yi=x;, Y,= 0, Yy=—u, Y,=—z, Y=z, Y=,
Yi=2,, Y=z,
Yi=0, Y,= 2z, Yy=—z, Y= 0, ¥=0, Y=z,
Y, =0, Yi==uz,.
Aus denselben lisst sich jede andere Losung jenes abgeleiteten

Gleichungssystems zusammensetzen und das nichste abgeleitete Glei-
chungssystem lautet daher

#y 2, + %54, L, = 0,

- x3Z1 + 5(75Z3 == O,
— 34, — %, 2, =0,
2,2y + 232, =0,
37222 + :273Z3 == O,

&2y + x, 2, =0,

xyZy + 2,Z; = 0.

Dieses Gleichungssystem ldsst keine Losung zu und die aus dem vor-
gelegten Modul entstehende Kette bricht also bei dem 3t Gleichungs-
systeme ab.

Um ein allgemeineres Beispiel zu behandeln, betrachten wir den
Modul (2, %, - . », ) und beweisen fiir diesen Modul den folgenden
Satz:

Wird fir die Gleichung
(33 @, Xy 4 2, X, 42Xy =0
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die Kette der abgeleiteten Gleichungssysteme aufgestellf, so bestehi aoll-
gemein das s Gleichungssystem dieser Ketle aus ( sf&__ 1) Gleichungen,

wihrend fir dasselbe die Zahl der zu bestimmenden Formen gleich (?)

und die Zahl der Losungen des vollen Losungssystems gleich sj}% 1) ist.
Die Cocfficienten der abgeleiteten Gleichungen sind simmitlich lineare
Formen.

Wir konnen diesen Satz fiir die niederen Fille ohné Schwierigkeit
durch directe Aufstellung der abgeleiteten Gleichungssysteme bestitigen.
Was beispielsweise den Fall #==4 anbetrifft, so besitzt das Gleichungs-
system

2 Xy + 2, X, + 2, X3 + 2, X, =0

die 6 Losungen

Xl=x27 X2=--$1, X:S"—‘ 0, X4= 0,
Xl“%z X,= 0, Xy=-—u, X4=" 0,
Xi=2z, X,= 0, 3= 0, X,=-—z=,
Xi=0, X,= =z, Xy=—2, X,= 0,
X,=0, X,= 2z, Xs= 0, X =—a,
Xi=0, X,= 0, Xs= 2z, X, =—uz

und das abgeleitete Gleichungssystem lautet daber

2, Y, + 23 Y, + 2, X5 =0,
— 2 ¥, +2 Y, 42, X; =0,
—x, Y, — 2 ¥, + 2, ¥, =0,

—x, ¥, — Lo ¥y — 23 ¥g = 0.

Die Losungen dieses Gleichungssystems sind

Y= z, Y,=—2z,, XY= 0, 1= Xy
Yy=—2, Y,= 0, Y= =z, XY= 0,
Yi":"“ 07 Yz‘:: Zy, Y3==-~$3, § = 07

Yx*‘"" 0, Y?""“*' 0, Ysm 0, Y4""‘“"‘"‘”¢‘:

Hieraus ergiebt sich das dritte Gleichungssystem der Kette in der
Gestalt

Mathematische Annalen, XXXVIL 33
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232y — 2,2, =V,
— z, 7, + 2,7, =0,
+ 2,2, — 2,2, =0,

%y 2y — %42, =0,
— %, 2y — 232, =0,

Y x,Z; — %,2, = 0.
Da dieses Gleichungssystem nur die eine Losung
Ly =2y, Ly==5, Li==u, L,=u
besitzt, so erhilt das 4t Gleichungssystem der Kette die Gestalt

z, U, =0,
$3U1=0,
33201:0,
iniz()

and dieses Gleichungssystem ldsst offenbar keine Lésung zu. Die
Kette der abgeleiteten Gleichungssysteme bricht also erst beim 4ten
Gleichungssysteme ab.

Um den Satz allgemein zu beweisen, folgen wir dem Gedanken-
gange, welcher dem Beweise des Theorems III zu Grunde liegt. Die
Gleichung (33) ldsst inshesondere die folgenden # — 1 Losungen zu

Xizx»n, X2~=O, XS:O, DY Xﬂ-—-lzog an'—"“xj)
Ximo) X2=xn’ st—..o, sy X%__l—""-:'-o’ ch_—_——-xz’

Xl=0) X2==O’ X3mx,,, vy Xpa=0, Xaz:’"'xsa
Xx=0) Xz":O’ X3=——=0, Tt Xn—l“"’*"a;m === Ln—1.

Wir nehmen nun eine beliebige Losung X, X,, . .., X, der Gleichung
(33) an und formen dann dieselbe durch geeignete Combination mit
den eben angegebenen # — 1 besonderen Losungen derart um, dass
an Stelle der Formen X,, X,, ..., X, solche Formen treten, welche
die Verinderliche 2, nicht enthalten. Da in der Gleichung (33) die
Form X, mit der Veriinderlichen , multiplicirt erscheint, so wird
nach dieser Umformung die an Stelle von X, tretende Form nothwendig
identisch gleich Null. Wir nehmen jetzt unseren Satz fiir den Fall
von 2 — 1 Verinderlichen als bewiesen an und schliessen aus dem-
selben, dass die Gleichung

(34) X+ 2,X, 4t 2 Xy =0
genan (n ; 1) Losungen besitzt, von denen keine eine lineare Com-

bination der iibrigen Losungen ist und durch welche jede andere
Lésung sich zusammensetzen lisst. Da iiberdies nach jenem Satze die
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Losungen simmtlich lineare Formen sein sollen, so erhilt die all-
gemeinste Losung von (34) die Gestalt

X, =l Y+ls Yot l1 (n;—l) ?/(n;-l) ’
Xz = l:»x ?/1+l22 ?/2+ e + 12 (n—;l) ?/(n;—-l) )

Xp—1=lo-121 y1+lﬂ—-1,2 Y - l“__l(n-z-l) ?/(n—z-l) ’

wo Uy, liay.e oyl 1(%3Y) lineare Formen der % — 1 Verinderlichen

n—-1

Zyy Loy envy Tn—y UBd Yy, Yo, e oy y(“..l) beliebige Formen der ndmlichen

Veriinderlichen z,, #,, - . ., ¥,—1 bedeuten. Aus den bisherigen Ueber-
legungen erkennen wir, dass eine jede Losung der urspriinglich vor-
gelegten Gleichung (33) sich in die Gestalt

X1= an1+ 0 + . ‘+Z“y1+ .. ‘+Zl(n—2—»1) y(u;l))
X, = 0 +$ni72+"'+221?f1+' "+Z2(n;1)?/(ﬂ;1)7
._.__xIYI.__.x:ZY.___. ..+ O +...+ 0

bringen lisst, wo ¥,, Y,,... Ya— Formen der n Verinderlichen
Zyy Loy ey L und WO 45+ y(,;...l) Formen der n — 1 Verinderlichen

%, Ly, . .. Xy bedeuten. Da iiberdies keine der verwendeten be-
sonderen Losunven einer linearen Combination der iibrigen Losungen
gleich ist, so ist in Uebereinstimmung mit dem obigen Satze die Ge-
sammtza.hl der in Betracht kommenden Losungen von (33) gleich

n—1 +( 9 1) d. h. gleich (2) und das aus (33) abgeleitete
Gleichungssystem erhilt die Gestalt

an1 u-—l—luY,.—}—”o—}-l(g_l)Y(n)=0,
(35) Zn Xy A - et 1y Ya - +lg(n—i) (ﬁ) =0,
2, Y~y Yy—-rF O - f O =0

Um das nichste abgeleitete Gleichungssystem aufzustellen, beriick-
sichtigen wir, dass da.s abgeleitete Gleichungssystem (35) die folgenden
Lisungen zuldsst

33‘
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:Yf‘“‘—'lua Y2=121, . Yn-—1==ln-1,1, Y“ = — Zy,
Y41 =0, - Y(;‘)::O’

Y, =1y, Y, =1, oy Ypoy=lu,2, Y, =0,
Yw1=--—x,;,..., Y(g =0,

= R = N—1\ 3 * o n— ="-‘l Py n === N
iy B=begy o = laey & =0
Yn_.l,.j_ == 0, e o YG) == = Ly

Auf Grund derjenigen Betrachtungen, wie sie frilher beim Beweise
- des Theorems III angewandt wurden, erkennt man leicht, dass sich

eine jede Losung von (35) aus den eben angegebenen (n—é- 1) Losungen
und aus den Losungen

Y,-——-=0, . e ey Y1 =0, Y,,’—‘=%, Y,,+1t==y2,..., Y(g) x?/(n.zq)

zusammensetzen ldsst, wo ¥, %,, . - ., ) Losungen des Gleichungs-
2
systems

Layy + Loy + - - - +ls(n;1) Yoty = 0 (s=1,2,..,n2—1)

sind.
Das letztere Gleichungssystem ist das aus (34) abgeleitete Glei-

chungssystem und besitzt daher unserem Satze zufolge genau (n—gl)

Losungen, von denen keine eine lineare Combination der iibrigen
Losungen ist und aus denen jede andere Losung sich linear zusammen-
setzen lisst. Die Gesammtzahl der in Betracht kommenden Losungen
des ans (33) abgeleiteten Gleichungssystems (35) ist daher gleich
(n—2——1) 4 (n 3 1) d. h. gleich (g) , was wiederum mit unserem Satze
ibereinstimmt. Fahren wir mit dieser Schlussweise fort, so folgt die
Richtigkeit unseres Satzes fiir # Verinderliche unter der Voraussetzung,
dass derselbe fiir # — 1 Verinderliche gilt. Da der Satz fiir n=2
unmittelbar einleuchtet, so ist derselbe allgemein giiltig.

Die eben durchgefiihrte Untersuchung der Gleichung (33) st vor-
nehamlich desshalb von principieller Bedeutung, weil dieselbe einen
Beleg dafiir giebt, dass thatsichlich der Fall vorkommit, wo die Ketle
der abgeleiteten Gleichungssysteme wicht frither als nach dem n'™ Glei-
chungssysteme abbrich.
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Iv.
Die charakteristische Function eines Moduls.

Die Entwickelungen des vorigen Abschnittes ermbglichen die Be-
stimmung der Anzahl derjenigen Bedingungen, denen die Coefficienten
einer Form geniigen miissen, damit dieselbe nach einem vorgelegten
Modul der Nuil congruent sei. Um dies einzusehen, betrachten wir
den Modul (F,, F,, ..., Fy), wo F,, F,, ..., F, homogene Formen
beziehungsweise von den Orduungen 7y, 7, . . ., #» in den n Verinder-
lichen z,, #,, . - ., , bedeuten und fragen zunichst, wie viele linear
von einander unabhingige Formen F von der Rt Ordnung es giebt,
welche nach jenem Modul der Null congruent sind, Aus dem Ansatze

F=AF + 4,F+ -+ dnln,
wo A,, 4,, ..., 4, Formen bezichungsweise von den Ordnungen
R—r, R—r,, .., B—r, sind, und aus den entsprechenden Aus-
fithrungen zu Anfang des vorigen Abschnittes erkennen wir, dass jene
gesuchte Anzahl gleich ist der Gesammtizahl der Coefficienten der
Formen A,, 4,, ..., An, vermindert um die Zahl derjenigen linear
unabhingigen Losungssysteme der Gleichung
(36) F1X1+F2X2+"'+mem=07
fir welche X,, X,,..., X, bezichungsweise Formen von den Ord-
nungen R—7,, R—17,,..., R —r, sind. Nach den Entwickelungen

am Schlusse des Abschnittes I setzt sich eine jede Losung dieser Glei-
chung (36) aus einer endlichen Anzahl von Ldsungen mit Hiilfe der

Formeln
X, = APFD 4 APFR .- -+ A“anf:u) t=1,2,...,m)

m
- - L 1
zusammen. Bezeichnen wir die Ordnungen der Formen F, F{3), ..., Ffl’ "
w

beziehungsweise mit 71, #f", ..., 7y, so sind 4P, 4P, .., A%

Formen beziehungsweise von den Ordnungen R—r—r{", B—r,—1¥,...

B—7r, —r®,. Wir erhalten daher die verlangte Anzahl der linear

m)’
unabhingigen Liosungssysteme der Gleichung (36), wenn wir die Ge-

sammizahl der in den Formen 4%, 4%, ..., Aﬁfg auftretenden Coeffi-
cienten um diejenige Zah! vermindern, welche angiebt, wie viel linear

unabhiingige Systeme von Formen X0 x .., X:,:I)n von den Ord-

. . 1
nungen beziehungsweise. B—r —r, B—r—1y, ..., B—r, wf;;n

den Gleichungen
@7) XPFP + XPFP + -+ X;:&) F:zm =0 (t=0L12,..,m)
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genligen. Zur Bestimmung dieser letzteren Zahl haben wir in ent-
sprechender Weise zu berticksichtigen, dass die simmtlichen Losungen
von (37) durch lineare Combination einer gewissen endlichen Anzahl
derselben erhalten werden konnen.. Es ist daher ersichtlich, dass jene
gesuchte Zahl sich ergiebt, wenn man die Anzahl der in den be-
treffenden Formen auftretenden Coefficienten um die Zahl der linear
unabhingigen Losungen des aus (37) abgeleiteten Gleichungssystems
vermindert. Dieses Verfahren hat man in entsprechender Weise fori-
zusetzen, bis die Kette der aus (36) abgeleiteten Gleichungssysteme
abbricht. Ist nun die Ordnung R der Form F so gross gewihlt,
dass die bei diesem Verfahren auftretenden Zahlen R—r,, R—r,,
(1)

1) 1
B — 1y, .R—-—ri-—-f(l, B—r —r ..., R*“’}“"‘";:(m R

simmtlich positiv bleiben, so lassen sich alle jene Anzahlen mit Hiilfe
ganzzahliger Coefficienten aus denjenigen Zahlen zusammensetzen,
welche angeben, wie viele Glieder die allgemeinen Formen von den

Ordnungen B—1r,, R—7y, ..., B—174, B—r,—1, B—r, —1{),...

R — r,— 1%, ... enthalien. Die letzteren Zahlen werden durch die
m

Ausdriicke

B—ri+VEB—1+4+2...(BR—r+n—1

"oy

1.2...(n—1) 2 tn
(R—rm+1)(R—-—rm—}-2)...(R~——rm+n———1)
1.2...(n—1) ? t

R—r—r O+ 1) RB—r—rV42).. . (B—ry—r, W fn—1)
1.2...(n—1) r e

B—ry—or® SN (B—r,—sD L2 . (R—ry— D 451
(=l ) B+ (i )

. o

m®) ml) m(1)
1.2...(0—1)

- - - - . . . . . . . - - . L4 » -

gegeben und sind daher ganze rationale Functionen vom 5 — It
Grade in Bezug auf B. In Folge dieses Umstandes ist somit auch die
Zahl der nach dem vorgelegten Modul der Null congruenten Formen
fiir genftigend grosse Werthe von R gleich einer ganzen rationalen
Function von R, deren Coefficienten bestimmte, nur von dem Modul
£y, F,, ..., F,) abhingige rationale Zahlen sind. Subtrahiren wir
diese Zahl von der Zahl der Glieder einer allgemeinen Form der Ord-
nung R, so erhalten wir die Zahl der von einander unabhingigen
Bedingungen, welchen die Coefficienten einer Form der R'e Ordpung
gentigen miissen, damit dieselbe nach dem Modul (F,, F,,..., F,)
der Null congruent sei. Die so .definirte Zahl ist daher ebenfalls fiir
geniigend grosse Werthe von R gleich einer ganzen rationalen Function
von B mit rationalen Zahlencoefficienten. Wir bezeichnen diese ganze
Function mit y(R) und nennen dieselbe die charakteristische
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Function des Moduls (¥, F,, ..., F,). Der cben gefiikrie Nach-
weis der Fristenz der charakteristischen Function stitzt sich auf die
Endlichkeit der Kette der abgeleiteten Gleichungssysteme
und beruht doher wesentlich auf dem Theorem III des wvorigen
Abschwittes.

Was die Grenze anbetrifft, oberhalb welcher die charakteristische
Function g(R) die in Rede stehende Anzahl von Bedingungen dar-
stellt, so zeigen die obigen Entwickelungen unmittelbar, wie dieselbe
aus den Ordnungen derjenigen Formen zn berechnen ist, welche in
der Kette der aus (36) abgeleiteten Gleichungssysteme als Lidsungen
auftreten.

Das eben gewonnene KErgebniss lisst sich offenbar auch in
folgender Weise aussprechen: Wenn wir allgemein mit ¢z die Zahl
der linear unabhingigen Bedingungen bezeichnen, denen eine Form
von der Ordnung R geniigen muss, damit dieselbe nach dem Modul
(Fy, F,, ..., Fr) der Null congruent sei, so ist die unendliche Zahlen-
reihe ¢, ¢,, ¢;, . . . VOn einem gewissen Elemente an eine arithmetische
Reihe von einer unterhalb der Zahl » liegenden Ordnung. In der
That ist fiir geniigend grosse “Werthe von R jederzeit

cg = y(R).
Die letztere Ueberlegnng begriindet zugleich eine Eintheilung der
Moduln, indem wir alle diejenigen Moduln zu der nimlichen Classe
rechnen, fiir welche jene Zahlenreihen ¢, ¢,, ¢;, ... elementweise
genau iibereinstimmen.

Um die allgemeine Gestalt der charakteristischen Function zu er-

mitteln, setzen wir

X(R)'—"" ao+aiR+az-zi2+"‘+“de’
WO @, Gy, O, Gsy ..., Gg ganze positive oder negative Zahlen sind
und der Grad d jedenfalls kleiner ist als die Zahl # der in den ge-
gebenen Formen auftretenden Verinderlichen. Gemidss der Bedeutung
der charakteristischen Funection erhilt y(R) fiir alle ganzzahligen ober-
halb einer bestimmten Grenze liegenden Argumente B stets ganz-
zahlige Werthe und hieraus lisst sich beweisen, dass y(R) tiberhaupt
fiir alle ganzzahligen Argumente ganzzahlige Werthe annimmt. Denn
gibe es eine ganze Zahl 7, fiir welche der Ausdruck

@ + o + 4 + - - - + agr®

nicht durch den Nenner a theilbar wire, so wire auch der Ausdruck

ay+ a(r +ka) + a,(r + ka): + - - - - aa(r 4 ka)?,
fiir beliebige ganzzahlige Werthe von % nicht durch o theilbar und
folglich wire auch y(r - ka) eine gebrochene Zahl. Hierin liegt ein
Widerspruch, sobald wir % so bestimmt denken, dass r -+ ka jene
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Grenze iiberschreitet, oberhalb welcher y(E) nothwendig eine ganze
Zahl wird.
Nachdem dies erkannt ist, setzen wir

¥(B) = 2+ u (?) +x2(§)+ a +Zd(§);

wo In iiblicher Weise

R _ _
(5)=EB=0..B_edD  (s_1,9,..,49

08

bedeutet. Da den oblgen Ausfiihrungen zufolge %(R) insbesondere
auch fir B =0 eine ganze Zahl ergiebt, so ist g, eine ganze Zahl
und in entsprechender Weise erkennen wir der Reihe nach durch
Einsetzen der Werthe R=1,2, ..., d, dass auch die anderen Coeffi-
cienten %, %, .- - X ganze Zahlen sind. Da umgekehrt allgemein

der Binomialecoefficient (f) fiir alle ganzzahligen Werthe von R eine

ganze Zahl wird, so ist der obige Ausdruck, falls man unter y,, 4, %o, ..., 22
ganze Zahlen versteht, die allgemeinste ganze rationale Function von
der Beschaffenheit, dass sie fiir alle ganzzahligen Argumente selber
ganzzahlige Werthe annimmt,

Die bisherigen Ergebnisse dieses Abschnittes fassen wir in dem
folgenden Theoreme zusammen:

Theorem 1IV. Die Zahl der von einander unabhingigen linearen
Bedingungen, denen die Coefficienten einer Form von der Ordnung R
genigen miissen, damit dieselbe nach einem vorgelegten Modul (F, F,, ..., Fp)
der Null congruent sei, wird, falls R oberhalb einer bestimmien Grenze
liegt, durch die Formel

z(R)=xo+xx(11%) +zg(§)+’~ -i!—xa(g)

dargestellt, wo %y, %15 Xas - « - Xa gewisse dem Modul (Fy, F,, ..., Fy,)
eigenthiimliche ganze Zahlen bedeuten. Die gamze Function y(R) vom
Grade d in Beaug auf R heisst die charakieristische Function des
Moduls (F,, F,, ... Fg).

Die obigen Ausfithrungen liefern zugleich eine allgemeine Methode
zur Bestimmung der charakteristischen Funetion. Um diese Methode
an einigen Beispielen zu erldutern, betrachten wir zuniichst den Modul
(Fy, F,, F), wo F,, F,, F, die nimlichen 3 quadratischen Formen
der 4 homogenen Verdnderlichen z,, 2,, 75, 2, bedeuten, welche bereits
in Abschnitt I und III ausfiihrlich behandelt worden sind. Die Zahl
der Coefficienten einer quaterniren Form von der Ordnung R betriigt

TEBED(EB+2)(B+3). Diese Zahl ist um diejenige Zabl zu
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vermindern, welche angiebt, wie viel linear unabbingige Formen F
von der Ordnung B durch die Formel
F=AF + A,F, + A, F;
darstellbar sind und die letztere Zahl erhalten wir wiederum dadurch,
dass wir die Gesammtzahl der Glieder in den 3 Formen 4, 4,, 4,
der R — 2 Ordnung, nimlich die Zahl 3.+ (B —1) BB+ 1)
um die Zahl derjenigen linear unabhingigen Formensysteme X, X,, X,
von der Ordnung R — 2 vermindern, welche der Gleichung
FXi+FX,+ FX;=0

geniigen, Wie am Schlusse des Abschnittes I gezeigt worden ist,
erhilt die allgemeinste Losung dieser Gleichung die Gestalt

X, = 4,0z, + 4,V2,,

X, = 4,9z, + 4,0z,

X3 = AI(I)IIP1 + Az(nx?.
Die zuletzt verlangte Zahl ist daher gleich der Gesammtzahl der Glieder
in den beiden Formen 4,0, 4,0 der R — 3' Ordnung, nimlich
gleich 2 - & (R —2) (R —1) B. Da nach den Ausfithrungen in Ab-
schnitt 111 das abgeleitete Gleichungssystem

2 X, + 2, X, =0,

2, X ® 4 2, X, =0,

z X0 + 2, X, =0
keine Lisung mehr zulisst, so sind jeme 2.3 (B—2)(R—1) R
Lésungssysteme simmtlich linear von einander unabhingig und die
urspriinglich gesuchte Zahl wird

1B =5 B+1)(R+2) (R+3)—3- g R—1)RE+1)

+2. z(B-DE-1DR
=1+ 3R.

Dieses Eirgebniss entspricht der Thatsache, dass eine Fliche Rter Ord-
nung genau 1 -} 3R Bedingungen erfillen muss, damit sie eine ge-
gebene Raumecurve 3t Ordpung enthalte.

Um ferner die charakteristische Function des Moduls (F}, F,,..., Fy)
zu berechnen, wo F,, F,, ..., F; die in Abschnitt I angegebenen
quadratischen Formen der 5 Verinderlichen z,,z,,... 2, sind, be-
nutzen wir die in Abschnitt III fiir diesen Modul aufgestellte Kette
der abgeleiteten Gleichungssysteme. Aus den Ordnungen der in diesen
Gleichungssystemen als Coefficienten auftretenden Formen erhalten wir
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fiir die charakteristische Function des Moduls (F,, F,, ..., F}) den
Ausdruck
B4 (BA+2) (B+3) (B4 o (B—1) B(EL1) (B42)

2 (B) = 1.2.3.4 1.2.3.4
(R—2) (B—1) R(R+1) (R—3) (BR—2) (R—1) R
+ 8 1.2.3.4 —3 1.2.3.4
—1-4R.

Behandelt man in gleicher Weise die oben fiir den Modul
(%y, 4, - . ., Z,) aufgestellte Kette der abgeleiteten Gleichungssysteme,
so ergiebt sich fiir die charakteristische Function dieses Moduls der
Werth

(B) = BHDBHD . Btn—1) _ (n) RELYD. .. Btn—2)
i) = 1.2...(n—1) (1 1.2 n—1D

Wy B—DRB...B+n—3
+(2) 1.2...(n—1) -

w B—n4+1)(E~—n+2)...(R—1)
+ 1) 1.2...(n—1)

und in der That ist offenbar jede beliebige Form nach dem Modul
(%, z,, . . ., ») der Null congruent.

Ist ferner F' eine beliebige ternire Form von der Ordnung 7, so
erhilt die charakteristische Function des durch diese Form bestimmten
Moduls (F) den Werth

2(B) = (R+§).(f+2) _B—r+DHER—r+2)

1.2
—— (=)@ —2)+1+rR

Sind F,, F, zwei beliebige ternire Formen von den Ordnungen
7y, 75, Welche nicht beide die namliche Form als Factor enthalten, so
wird fiir den Modul (F,, F))

1(B)—=EXVEFD R—n+D(E—n+2

1.2 1.2
__B—rnt+B—r-+2)
1.2
1 RB—ry—r+1)(EB—r—1r+2)
1.2

Bedeuten endlich F;, F, zwei quaternire Formen der Ordnungen
7y, ¥, ohne gemeinsamen Factor, so ergiebt sich fiir die charakteristische
Function des Moduls (¥, F,) der Werth
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2(R) = B+HEBF+2DE+3) EB—rn+HEB—r+2)B~—1r+3)

1.2.3 1.2.3
 B—nt)B—r+)B—r+9
1.2.3
+ B—ri—rn+YEB—r—r+2)(B—r—1r+3)
1.2,.38

1
=217y — 5 7, 73(ry + 7)) + i1 B

-Die in diesem und in dem vorigen Abschnitte gewonnenen all-
gemeinen Principien setzen uns in den Stand, den besonderen Fall
eines Moduls von bindren Formen im Sinne unserer Theorie voll-
kommen erschopfend zu behandeln. Um dies zu zeigen, sei der Modul
(F,, F,, ... F,) vorgelegt, wo F,, F,, ... F, binire Formen sind,
von denen wir der Einfachheit halber voraussetzen, dass sie nicht
simmtlich eine und dieselbe Form als Factor enthalten und dass ferner
alle von der nimlichen Ordnung r sind. Wegen der ersteren Voraus-
setzung ist die charakteristische Function des Moduls (Fy, F,, .. ., Fy)
gleich Null. Denn unter jener Voraussetzung ldsst sich eine jede binire
Form F' von geniigend hoher Ordnung R in die Gestalt

F=AF + AF,+-- -+ A4, F,
bringen, wo A4, 4,,..., 4, simmtlich Formen von der Ordnung
B — r sind. Der Beweis dieser Thatsache wurde bereits zu Anfang
des Abschnittes I kurz angedeutet. Andererseits berechnen wir die
ndmliche charakteristische Function nach der oben dargelegten all-
gemeinen Methode, indem wir fiir die Gleichung

F, X, F+EX, 4+ -+ FrXn=0
ein volles System von Losungen aufstellen, in welchem keine durch
lineare Combination der anderen Losungen des Systems erhalten werden
kann. Dieses System von Losungen sei
X, =Gy, X,=0; .., Xn==0ns (=1,2,...,mW)

und wir bezeichnen allgemein die den Formen Gi,, Gay, ..., Gus
gemeinsame Ordnung mit 7,. Zwisehen diesen Losungen besteht keine
Relation; denn das aus obiger Gleichung abgeleitete Gleichungssystem

GnX®+ GuXP 4 6 X0 =0 (=1,2,...,m)
besitzt zufolge von Theorem III des vorigen Abschnittes keine Losung.
Die in Rede stehende.charakteristische Function wird daher

1B =R+1—mEB—r+)+ D (B—r—n+1)
— RO —m+ 1) — =D mO —m+ 47— Dn,
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wo die Summe fiber s == 1,2, ..., m® zu erstrecken ist. Setzen wir
auf der rechten Seite den Coefficienten von B und das von R freie
Glied einzeln gleich Null, so ergiebt sich

m =m — 1,
re=rtr+t+--Frm
und hieraus gewinnen wir den Satz:

Besitzen die m bindiren Formen F,, F,, ..., F, von der Ordnung r
nicht simmilich einen gemeinsamen Factor, so besteht das volle Lisungs-
system der Gleichung

F1X1+F2X2+ e+ FuXp=0
stets aus m — 1 Lésungen
X =G, X,=025 .., Xn=0Cps, (=1,2,..,m—1)
welche durch keine Relation mit einander verkwiipft sind, und die Summe
der Ordnungen dieser m — 1 Lisungen kommt der Zahl r gleich®).
Aus den m — 1 Gleichungen
G1,E+G'23F2+'--+Gm.,1"m=»—-0 (s=1,2,...,m-—-1)
folgt
Fo:Fy:- - :Fa=D:Dy:---:Dy,
wo D,, D,, ..., D, die entsprechenden 2 — 1 reihigen Determinanten
der Maitrix
Gy, G, Gy ...Gn

Gi? G22 G32 . Gm2

i
I Gl,m—l G2,m~—-1 G3,m~1 . . Gm,m——x {

bedeuten. Da nach dem eben bewiesenen Satze die Ordnung dieser
Determinanten in Bezug auf die biniren Verinderlichen z,, x, gleich
r ist, so sind jene Formen, abgesechen von einem unwesentlichen
Zahlenfactor, den entsprechenden Determinanten jener Matrix gleich
und wir sefzen demnach
Fy=2D,, F,=2D,, ..., Fy=2D,.

Diese Formeln dienen umgekehrt dazu, um die Formen ¥, F,,..., F,,

zu ermitteln, wenn die m — 1 Lidsungssysteme
X =G, X,=G; .., Xn=0Cpy (s=1,2,..,m—1)

gegeben sind. Auch erkennen wir zugleich, dass .die Ordnungen
iy T35 -+ Tm—1 keiner beschrinkenden Bedingung unterliegen, ab-
gesehen davon, dass ihre Summe gleich # ist.

¥) Diesen Satz hat bereits F. Meyer vermuthet und bei seinen Unter-
suchungen Uber reducible Functionen als Voraussetzung eingefithrt; vgl. Math.
Ann,, Bd. 30, S. 38.
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Die Zahlen 7,,#55. .. 75—y bestimmen {iberdies, wie man Jeicht
einsieht, vollkommen die oben allgemein definirte Zahlenreihe ¢, ¢,, ¢, ...
fir den vorgelegten Modul (Fy, F,, ..., F,) und infolge dessen auch
die Classe, welcher dieser Modul angehort. Fiir alle die Zahl 27 — 1
iibersteigenden Werthe von R wird ¢z = z(B)=0. Endlich kann
man die beiden vorhin gemachten Voraussetzungen fallen lassen, dass
die Formen des vorgelegten Moduls simmtlich von der nimlichen
Ordnung und ohne gemeinsamen Theiler sind und man erkennt leicht,
welche Abinderungen dann in den gefundenen Resultaten vorzu-
nehmen sind.

Die eben angestellien Betrachtungen erledigen im Wesentlichen
die Theorie der biniren Moduln. Die weitere Aufgabe besteht in einer
entsprechenden Behandlung der Theorie derjenigen Moduln, welche
Formen mit drei und mehr Veréinderlichen enthalten. Doch sei hier
nur hervorgehoben, dass es zu einer solchen Fortentwickelung der
Theorie vor Allem der Verallgemeinerung des Noether’schen Funda-
mentalsatzes*) fiir Formen von mehr Verinderlichen sowie einer ein-
gehenden Untersuchung aller hierbei in Betracht kommenden Aus-
pahmefille bedarf.

Die in Abschnitt I citirten Untersuchungen fiber Modulsysteme
erdrtern eine Reihe weiterer fiir die Theorie der Moduln fundamentaler
Begriffe. Die betreffenden Definitionen sind nach geringfiigigen Ab-
anderungen auch fiir die hier betrachteten Moduln von homogenen
Formen giiltig. Wir beschiftigen uns insbesondere mit den Begriffen des
,kleinsten enthaltenden und des ,,grossten gemeinsamen
Moduls¥¥). Sind irgend zwei homogene Moduln (¥,, F,, ..., F,;) und
(H,, H,, ..., H;) vorgelegt, so stelle man zunichst fir die Gleichung

FX + FX,+-- A FpXn=H Y + Y, + -+ HY,

das volle Losungssystem

X1=Fls; X =F2.n LRI Xm= ms}

= § == 1 2 2. k

Y,'—'—~"H1;, Y2=H‘23)0'O, YI;=Hh8 ( > ’ }
anf und bilde dann die Formen
K,=——~F,F13+F2F2.g +"‘+ FmEas’:-H;HI:"I“Hz-H—h“I“"'{‘H}zHit

(8 = 12 22 MR k}.

Der Modul (X,, K,, ..., K ist der kleinste enthaltende Modal.
Andererseits erhilt man durch Zusammenstellung der einzelnen Formen

#) Vgl. M. Noether, Math,-Ann, Bd. 6 und 30, sowie A, Voss, Math, Ann,
Bd. 27 und L. Stickelberger, Math. Ann. Bd. 30.

#%) Vgl betreffs der Begriffsbestimmung: L. Kronecker, Crelle’s Journal
Bd. 92, S. 78 sowie R. Dedekind und H. Weber, Crelle’s Journal Bd. 92,
S, 197.
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der beiden vorgelegten Moduln den grossten gemeinsamen Modul in
der Gestalt

(Fl’ Fz’ . Fm, Hi’ Hz, IR Hk)'_::'(gi) G2, oo Gg)o

Es besteht nun eine sehr einfache Beziehung zwischen den charak-
teristischen Functionen zr und gz der beiden vorgelegten Moduln und
den charakteristischen Functionen yx und ys des kleinsten enthaltenden
und des grossten gemeinsamen Moduls. Um diese Beziehung herzu-
leiten, bilden wir zuniichst ein System Sy von linear unabhingigen
Formen R'*r Ordnung, welche simmtlich nach dem Modul (F, F, ..., Fy)
der Null congruent sind und aus denen sich jede andere Form Rte
Ordnung von der nimlichen Beschaffenheit linear zusammensetzen
lisst. Wenn E eine gewisse Grenze iibersteigt, so ist die Zahl der
Formen dieses Systems Sy gleich ¢ (R) — g#(R), wo ¢(R) die Zahl
der Glieder einer allgemeinen Form Rt Ordnung bedeutet. Ferner
bilden wir ein volles System Sz von linear unabhingigen Formen der
Rt Ordnung, welche sowohl nach dem Modul (F), F,, ... F,) als
auch zuogleich nach dem Modul (H,, H,, ..., H;) der Null congruent
sind. Diese Formen sind simmtlich gleich linearen Combinationen
der Formen des Systems Sz Die Anzahl der Formen des Systems Sk
ist fiir gentigend grosse Werthe von B gleich ¢(R) — yx(E). Endlich
bilden wir ein System S von Formen, welche die Formen des Systems
Sk zn einem vollen System Sy von linear unabhingigen und nach dem
Modul (H,, H,, ..., H;) der Null congruenten Formen erginzen. Die
Zahl der Formen des Systems Sz ist ¢ (B) — yz(R) und da die Formen
der Systeme S und Sy zusammen die Formen des Systems Sz ergeben,
so ist die Zahl der Formen des Systems S gleich

{p(B) — 2a(B)} — {9(B) — 1x(R)} = 2x(R) — xz(R).

Nun sind, wie aus der angegebenen Bildungsweise hervorgeht, die Formen
der beiden Systeme Sz und S linear von einander unabhingig und anderer-
seits kann man durch lineare Combination der Formen dieser beiden
Systeme Sy und S alle Formen herstellen, welche iiberhaupt lineare
Combinationen von Formen der Systeme Sy und Sy sind. Es bilden also
die Formen der Systeme Sy und S zusammengenommen ein volles
System Sg¢ von linear unabhingigen Formen R'r Ordnung, welche
nach dem Modul (G, G,, ..., G;) der Null congruent sind. Den
obigen Betrachtungen zufolge ist die Gesammtzahl der Formen in den
Systemen Sy und S gleich @(RB) — y~(B) + 1x(BR) — yz(R) und
andererseits ist die Zahl der Formen des Systems S¢ gleich ¢ (B) — y¢(RB).
Diese beiden Zahlen sind daher -einander gleich d. h.

@(R) — gr(BY + 1x(B) — ga(B) = p(B) — 2¢(B)
xr -+ 2 =1z 1 e

er
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Wir sprechen dieses Ergebniss in folgendem Satze aus:

Die Summe der charakieristischen Functionen zweier beliebigen
Moduln ist gleich der Summe der charakteristischen Functionen fiir den
kleinsten enthalienden und den grossten gemeinsamen Modul.

Zum Schlusse dieses Abschnittes moge noch kurz der Weg be-
zeichnet werden, wie sich die eben gewonnenen allgemeinen Resultate
fiir die Theorie der algebraischen Gebilde verwenden lassen.

Es sei zunfichst im drei-dimensionalen Raume eine Curve oder ein
System von Curven und Punkten gegeben. Durch dieses Gebilde lisst
sich nach einem in Abschnitt I bewiesenen Satze stets eine endliche
Zahl von Flichen

F,=0, F,=0,..,F,=0

solcher Art hindurch legen, das jede andere das Gebilde enthaltende
Fliche durch eine Gleichung von der Gestalt
AF, +AF, 4 ---+ A4, Fr=0

dargestellt wird. Diese Ueberlegung zeigt, dass jedem algebraischen
Gebilde ein Modul (F,, F,, ..., F,) und durch dessen Vermittelung
eine bestimmte charakteristische Function y(R) zugehort. Die letztere
Function giebt dann an, wie viele von einander unabhingige Be-
dingungen eine Fliche von der eine gewisse Grenze iiberschreitenden
Ordnung R erfiillen miisse, damit sie das betreffende Gebilde enthalte.
So hat die charakteristische Function einer doppelpunkislosen Raum-
curve von der Ordnung 7 und dem Geschlechte p den Werth*®)

1(B)y=—p+ 1+ 7R
Als Beispiel diene die cubische Raumcurve, deren charakteristische
Function zufolge der vorhin in diesem Abschnitte ausgefiibrien Rech-
nung den Werth 1 4 3 B erhilt.
Fiir die Schnittcurve zweier Flichen von den Ordnungen 7, und r,
ergiebt sich der fritheren Rechnung zufolge die charakteristische Function

1
URB) =217, — 5 r173(ry + 1) + 7y, R.

Um zugleich im Anschluss an die letzteren Betrachtungen die
Bedeutung des zuvor abgeleiteten allgemeinen Satzes iiber die charak-
teristischen Functionen zu erliutern, wenden wir denselben auf die
Losung einer Aufgabe aus der Theorie der Raumeurven an. Es mégen
zwei Raumocurven ohne Doppelpunkte von den Ordnungen g, 0, und
beziehungsweise von den Geschlechtern p,, p, zusammen den voll-
stindigen Durchschnitt zweier Flichen K, =0, K, =0 von den Oxd-
nungen 7,, 7, bilden. Die den beiden Raumcarvsea eigenen Moduln

*) Vgl. M, Noether, Crelle’s Journal Bd. 93, S, 295,
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seien (F,,F,,..., F,) uwnd (H,, H,, ..., H,). Der kleinste ent-
haltende Modul dieser beiden Moduln ist dann (X, X,) und der
grosste gemeinsame Modul (¥, F, & .. F,, H, 6 H,,..., H) wird
geometrisch durch digjenigen Punkte dargestellt, welche beiden Raum-
curven gemeinsam sind, Die Zahl dieser Punkte sei . Die in Be-
tracht kommenden charakteristischen Functionen sind

w(B)=—p + 1+ ek,
pa(B)y=—p.+ 1+ 0. R,
1wx(B) = 2rr,— "'12""'1"'2(”'1 + 7))+ 1 R,
wlB)y= ¢
und die Anwendung unseres Satzes

xr+ 18 =1x+ fo
ergiebt fiir die Zahl der den beiden Raumcurven gemeinsamen Punkte
den Werth

1
0= —217F 5 rn(r + “:2) — 0 — D+ 2.

Was die Verallgemeinerung dieser Betrachtungen auf Riume von
beliebig vielen Dimensionen anbetrifft, so erscheinen noch die folgenden
Resultate bemerkenswerth. Es sei in einem Raume von beliebig vielen
Dimensionen ein algebraisches Gebilde gegeben und der zu diesem
algebraischen Gebilde zugehorige Modul mdge die charakteristische
Funetion

1B =nt+n(D+nE)+- +u(b)

besitzen; dann gicbt der Grad d dieser charakteristischen Function
die Dimension und der Coefficient y; die Ordnung des algebraischen
Gebildes an, wihrend die ibrigen Coefficienten ¥, %y, - .., fa— mit
den von M. Noether®) definirten und behandelten Geschlechtszahlen
des Gebildes in engem Zusammenhange stehen. Der allgemeine Beweis
hierfiir beruht auf dem Schlusse von # — 1 auf % Verinderliche. Wie
man sieht finden sich die eben angegebenen Sifze in dem Falle der
Curve im dreidimensionalen Raume in der That bestitigt.

Inwiefern umgekehrt ein Modul durch die Gesammtheit der Werth-
systeme bestimmt ist, welche die einzelnen Formen des Moduls gleich-
zeitig zu Null machen, ist eine Frage, welche erst durch eine syste-
matische und alle méglichen Ausnahmefille nmfassende Untersuchung
des Noether’schen Fundamentalsatzes fiir beliebige Dimensionenzahl
eine befriedigende nnd allgemeingiiltige Beantwortung finden kann.

#) Vgl. Math. Ann, Bd. 2 und 8.
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Endlich sei noch auf die von A. Cayley, G. Salmon, S. Roberts
und A. Brill ausgebildete Theorie der sogenannten beschrinkten
Gleichungssysteme*) hingewiesen, da insbesondere fiir diesen Zweig
der Algebra unker Begriff der charakteristischen Function eine wirk-
same Fragestellung sowie einen einheitlichen Gesichtspunkt liefert. Ist
beispielsweise eine Raumecurve gegeben und betrachten wir irgend drei
dieselbe enthaltende Flichen 7 = 0, F, = 0, F, = 0 bezichungsweise
von. den Ordnungen r,, r,, 7;, so ist die Zahl der Schnittpunkte dieser
Flichen, welche ausserhalb jener Raumecurve liegen, offenbar gleich
der charakteristischen Function des Moduls (¥), F,, F;), vermindert
um die charakteristische Function der Raumcurve. Diese Schlussweise
fiihrt in der That zu einem verallgemeinerungsfihigen Beweise fiir den
bekannten Satz, wonach die Zahl der durch eine gemeinsame Raum-
curve absorbirten Schnittpunkte jener drei Fliachen gleich o(r,+7,F7,)—«
ist, wenn g die Ordnung der Raumecurve und « eine andere jener Raum-
curve eigene Constante, den sogenannten Rang derselben, bedeutet.

Diese Angaben mogen geniigen, um zu zeigen, wie die in diesem
Abschnitte entwickelte Theorie der charakteristischen Function zu einer
einheitlichen und iibersichtlichen Behandlung der einem algebraischen
Gebilde eigenthiimlichen Zahlen (Dimension, Ordnung, Geschlechter,
Rang u. s. w.) fithrt. Die weitere Aufgabe der Theorie wire nunmehr
die wirkliche Durchfiihrung der diesen Anzahlbestimmungen zu Grunde
liegenden algebraischen Processe.

V.
Die Theorie der algebraischen Invarianten.

Die in Abschnitt I entwickelten Principien bewihren ihre Kraft
insbesondere auch in demjenigen Theile der Algebra, welcher von den
bei linearen Substitutionen der Verinderlichen invariant bleibenden
Formen handelt. Bekanntlich hat zuerst P. Gordan*¥) bewiesen, dass
die Invarianten eines Systems von binidren Grundformen mit einer
Verinderlichenreihe z,, z, simmtlich ganze und rationale Functionen
einer endlichen Anzahl derselben sind. Die zu diesem Beweise be-
nutzten Methoden reichen jedoch nicht aus, wenn es sich um den
Nachweis des entsprechenden Satzes fiir Formen von mehr Verinder-
lichen handelt, oder wenn die Grundformen mehrere Reihen von Ver-
dnderlichen enthalten, welche theilweise verschiedenen linearen Trans-

* Vgl G. S8almon, Algebra der linearen Transformationen, Vorlesung 22
und 23, sowie den beziiglichen Litteraturnachweis.

¥*) Vgl. Vorlesungen iiber Invariantentheorie., Bd. II, S.231, Andere Beweise
sind gegeben worden yon F. Mertens in Crelle’s Journal Bd, 100, S. 223 und
vom Verfasser in den Math. Ann. Bd. 33, S. 223,
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formationen unterliegen. Es sollen im Folgenden die Mittel dargelegt
werden, deren es zur Erledigung der eben. gekennzeichneten allge-
meineren Fragen bedarf.

Um in dem Beweise die wesentlichen Gedanken moglichst klar
hervortreten zu lassen, betrachten wir zuniichst den einfachen Fall einer
einzigen biniren Grundform f mit nur einer Verinderlichenreihe 2, z,.

Nach einem in Abschnitt I bewiesenen Satze Iisst sich aus
einem jeden beliebig gegebenen Formensysteme stets eine endliche
Zahl von Formen derart auswihlen, dass jede andere Form des Systems
dureh lineare Combination jener ansgewihlten Formen erhalten werden
kann. Wir betrachten insbesondere das System aller Invarianten der
binéiren Grundform f und es muss dann nach dem angefiihrien Satze
nothwendigerweise eine endliche Zahl m von Invarianten 4, 4y, ..., in
geben von der Art, dass eine jede andere Invariante 4 der Grundform
f in der Gestalt
(38) ¢ = A4 + Ayiy + - - -+ Auim
ausgedriickt werden kann, wo A, 4,, ..., A, ganze homogene Fune-
tionen der Coefficienten der Grundform f sind. Doch kann dieses
Ergebniss offenbar auch direct aus Theorem I in Abschnitt I abgeleitet
werden. Um dies kurz zu zeigen, wihlen wir zunichst nach Willkiir
aus der Gesammtheit der Invarianten der gegebenen Grundform f eine
Invariante aus und bezeichnen dieselbe mit 4,; ferner mdbge i, eine
Invariante der Grundform f sein, welche nicht einem Produete von
der Gestalt 4,4, gleich ist, wo A4, eine ganze homogene Function der
Coefficienten der Grundform f ist; ¢, sel nun eine Invariante, welche
sich nicht in die Gestalt 4,7, 4 A,i, bringen lisst, wo 4, und 4,
wiederum ganze homogene Functionen der Coefficienten der Grund-
form f sind. Entsprechend sei i, eine Invariante der Grundform,
welche sich nicht in die Gestalt A, 4 4,4, + Ajé; bringen ldsst
und wenn wir in dieser Weise fortfahren, so gewinnen wir eine Formen-
reihe i, 4y, 45, - - -, in welcher keine Form durch lineare Combination
der vorhergehenden Formen erhalten werden kann. Aus Theorem. I
in Abschnitt I folgt, dass eine solche Reihe nothwendig im Endlichen
abbricht. Bezeichnen wir die letzte Form jener Reihe mit 4,, so ist
eine jede Invariante der gegebenen Grundform f gleich einer linearen
Combination der # Invarianten 4, 4,, ..., . Das so gewonnene
Ergebniss bezeichnet den ersten Schritt, welcher zum Beweise der
Endlichkeit des vollen Invariantensystems erforderlich ist.

Der zweite Schritt besteht darin, zu zeigen, dass in dem Aus-
drucke A i, - 4,4, 4+ Aty die Functionen 4, 4,, . . ., An stets
durch Invarianten J,, Jy, . . ., Jy ersetzt werden konnen, ohne, dass
sich dabei der Werth ¢ jenes Ausdrucks dndert. Dieser zweite Schritt
Igsst sich in dem hier zuniichst betrachteten Falle einer bindren Grund-
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form mit nur einer Verinderlichenreihe in besonders einfacher Weise
ausfilhren, wenn wir uns des folgenden in der Inauguraldissertation®)
des Verfassers bewiesenen Satzes bedienen:

Jede homogene und isobare (d. b, nur aus Gliedern von dem
nimlichen Gewichte bestehende) Function der Coefficienten einer
biniren Form

n -1
0t + (1) aat o, 4 - - + auad
vom Grade # in den Coefficienten q,, a, . .., a, und vom Gewichte
== %t geht nach Anwendung des Differentiationsprocesses

AD A2 A3 D3
[l=1— TTar & 21zt anar T

DA DAz D3 A2

=1- i T 218! 314! Tt

worin
8 Ca a 3
D pr— ao __.._.,,aai + ai _a_&; + 3a2 _.__.aas + . e

0
A —ngy o+ —1)ay 35 + (1—2)ay o+ - - -

zu setzen ist, in eine Invariante jener Grundform iber,

Wir bezeichnen nun die Gewichte der Invarianten 34,4,,4,,. .., iy
beziehungsweise mit p, p,, p;, - .., Pn und fassen ferner allgemein
unter der Bezeichnung B;-alle diejenigen Glieder des Ausdruckes A,
zusammen , welche vom Gewichte p — p, sind. Da in der Formel (38)
auf der linken Seite nur Glieder vom Gewichte p vorhanden sind, so
diirfen wir auf der rechten Seite der nimlichen Formel alle Glieder
der Producte A,i, unterdriicken, deren Gewichte kleiner oder grosser
als p sind, und wir erhalten dadurch fiir ¢ den Ausdruck
(39) i =B, + Byiy + - - + Butm.
wo B,, B,,..,, By eben jene homogenen und isobaren Functionen
der Coefficienten der Grundform sind. Beachten wir nun, dass eine
Invariante bei Anwendung des Differentiationsprocesses D sowie bei
Anwendung des Differentiationsprocesses A identisch verschwindet und
dass die homogenen und iscbaren Functionen B, dem obigen Satze
zufolge bei Anwendung des Differentiationsprocesses [ ] in gewisse In-
varianten J, der bindren Grundform [ tibergehen, so folgt

{ﬂ —":i:
[Byi) = [Bis—=dvie (s=1,2, ..., m)

*) Ueber die invarianten Eigenschaften specieller binirer Formen, insbeson-
dere der Kugelfunctionen, Konigsberg-i. Pr. 1885, sowie : Ueber eine Darstellupgs-
weise der invarianten Gebilde im bindiren Formengebiete, Math. Ann. B4, 30, S, 13,

3**
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und, wenn wir anf jedes Glied in (89) den Process [ ] anwenden, so
entsteht die Gleichung

i =dyiy + Jyly + - -+ + .

Die Invarianten Jy, J,, ..., J, sind simmilich von niederem Grade
in den Coefficienten der Grundform als die Invariante ¢ und indem
wir nun diese Invarianten J,, J,, ..., J, der ndmlichen Behandlung
unterwerfen, wie vorhin die Invariante ¢, erhalten wir schliesslich eine
‘ganze und rationale Darstellung der Invariante ¢ mit Hiilfe der m
Invarianten 4, 4,, ..., 4. Die letzteren m Invarianten bilden daher
das volle System der lavarianten fiir die vorgelegte binire Grund-
form f.

Der zweite Schritt in diesem Beweise bestand darin, dass wir
zeigten, wie in dem urspriinglichen Ausdrucke (38) fir ¢ die Fune-
tionen A4,, 4,, ..., A, selber durch Invarianten zu ersetzen sind,
Wenn es sich nun um Grundformen von mehreren Verinderlichen
handelt, so kann dieser zweite Schritt nicht genau in der nimlichen
Weise wie vorhin ausgefithrt werden, weil diejenigen Sitze noch nicht
bekannt sind, welche in der Invariantentheorie der Formen mit mehr
Verinderlichen dem vorhin fiir das binire Formengebiet ausgesprochenen
Satze entsprechen. Aber in jenem allgemeineren Falle leistet den
gleichen Dienst ein Satz, welcher im wesentlichen mit einem von
P. Gordan®) und F. Mertens*) bewiesenen Satze iibereinstimmt
und fiir terndre Formen, wie folgt, lautet:

Es sei ein System von terniren Grundformen fO, 3, ... f®
mit den Verdnderlichen z,, z,, z, vorgelegt; die Formen dieses Systems
modgen vermittelst der linearen Substitution der Verinderlichen

Zy = G Yy T Yy + 04395, L@y @y Gy
(40) Zy == Qoy Yy -+ Qgoly ++ Ag3Ys, a4 ==
23 == 3, Y; + G329, - Ag3Y3,

ibergehen bezjehungsweise in £.°, W LB, Es sei ferner F(f.)
irgend eine ganze Function der Coefﬁcxenten dieser transformirten
Formen £3°, f&, ..., f¥, welche in den Coefficienten jeder einzelnen
Form homcgen ist. Multipliciren wir diese Function F(f,) mit a2, wo
a die Substitutiongdeterminante und g eine beliebige nicht negative
ganze Zahl bedeutet, und wenden wir dann anf das Product at F(f,)
den Differentiationsprocess

Qg gy Qg3

Qg Q3y Qgg

* Vorlesungen iiber Invariantentheorie, Bd. I, § 9; vgl. auch A. Clebsch,
Ueber symbolische Darstellung algebraischer Formen, Crelle’s Journal Bd. 59,
#%y Ueber invariante Gebilde fernirer Formen, Sitzungsb, der kais. Akad.

ger Wigs. zo Wien, Bd. 95,
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so oft an, bis sich ein von den Substitutionscoefficienten a,,, a,5,...,a55
freier Ausdruck ergiebt, so ist der so entstehende Ausdruck eine In-
variante des Formensystems 7V, f@, ..., f®,

Dieser Satz folgt unmittelbar aus der Eigenschaft der Unveréinder-
lichkeit der Invarianten bel linearer Transformation. Um dies zu
zeigen, denken wir uns die Grundformen f®, f®, . f® in den Ver-
dnderlichen y,, ¥,, ¥, geschrieben und wenden dann auf die letzteren
Veranderlichen die lineare Transformation

Yy == by 2y -+ byy 2y + by32;, by byy by
41) Yy = by 2y - byy2y -+ by32s, b=1by by by
Ys = by 2, 4+ b32, + byy2s, byy by by

an. Hierdurch mogen die Grundformen fO, f@&, .., f® beziehungs-
weise in f3V, /2, ..., fi° tbergehen. Endlich setzen wir die beiden
linearen Substitutionen (40) und (41) zusammen zu der linearen Sub-
stitution

Xy == 1181 = C1085 1 €323, €1 G2 Gy
(42) 2y == Cyy 2y + g2 + 09323, C==|0Cy Cy €y |=ab,
Xy == €348y F 3225 ~ €335, €31 C39 O3

WO €y, Cias - - +; €33 die bekannten bilinearen Verbindungen der Sub-
stitutionscoefficienten a,,, @4, . . -, @33 und by, by, . . ., by sind. Die
Grundformen f®, f@, . .., f® mbgen bei Anwendung der zusammen-
gesetzten Substitution (42) in £, £7,.. ., f® tbergehen. Zu der Sub-
stitution (41) gehort der Differentiationsprocess
Q, — @ _ o n & &
2 9by Oby Obys - Bbyy Oby Db Obys Obys G0y 0012 0byy Dby
0° Vs

Y—

+ 8bj3ab21 abgz abgsabzaabsx

und zu der zusammengesetzten Substitution (42) gehort der Differen-

tiationsprocess
Q=2 @ b 2
©T Genden o 06106 0¢n 06120 Ca 003y 652 00y 0¢ss

aﬁ
Dl 0006 0¢1sd CuOCy
Bezeichnen wir mit p die Zahl, welche angiebt, nach wie viel-
maliger Anwendung von Q, der Ausdruck a?F(f;) von den Substitations-
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coefficienten a,, ayy, ..., @y frei wird, so besteht unsere Aufgabe
darin, zu zeigen, dass der Ausdruck

J(f) = Q& {a2 F(f.)}

ein Invariante der Grundformen fO, f®, ..., f® ist. Da der Aus-
druck rechter Hand von den Substitutionscoefficienten a,,, @, . . ., as;
frei sein soll, so ist auch

I(f) =W {wF(f}.

In dieser Formel setzen wir fiir die Coefficienten der Formen f®,f®, .., f®
die entsprechenden Coefficienten der transformirten Formen £, £,®,
.- o, [2® ein. Dadurch gehen die Coefficienten der Formen £V, £,®,
..., [t® in die Coefficienten der Formen [V, f®,..., f® iiber und
wir erhalten

I (f) = QF {beF(f)}
oder

(43) ad(f) =QF {a F(f3)} .

Der Ausdruck ¢2 F(f;) hingt von den Coefficienten der Grundformen
O, @, ..., f® und von den Substitutionscoefficienten a,,, a,,, ..., as;,
bigy b1gy ..., by ab; er enthilt jedoch diese Substitutionscoefficienten
lediglich in den bilinearen Verbindungen ¢,,, ¢,5, - . ., €35 BEs gilt nun
fiir eine jede Function G dieser bilinearen Verbindungen ¢, ¢59,..., ¢33
wie aus dem Multiplicationssatze der Determinanten leicht erkannt
wird, die Beziehung

Qb G = anG
und durch p-malige Anwendung derselben erhalten wir
(44) U F(f)} = o* @ {erF (1)} -

Es ist nun andererseits

I(f) = {a F(f)}
und folglich wegen (43) und (44)
J(fa) = a*=2J(f).
Diese Formel zeigt, dass dem Ausdrucke J(f) die Invarianteneigen-
schaft zukommt.
Der eben bewiesene Satz ermbglicht die Aufstellung von beliebig
vielen Invarianten des vorgelegten Formensystems. Um zu zeigen,

dass durch dieses Verfahren simmiliche Invarianten gefunden werden
kbnnen, betrachten wir den Ausdruck Qra®?. Das Differentiations-

symbol Q, geht ans der Determinante o hervor, wenn wir allgemein



Ueber die Theorie der algebraischen Formen. 527

in jedem Gliede -} @,y Gy asy der letzteren fiir das Product @y @z ass
33
0@y’ Oy’ 0Qsy
Zahlen 1, 2, 3 in irgend einer Reihenfolge bedeuten. Entsprechend
erhalten wir das Differentiationssymbol Q2 aus a?, wenn wir in dem
entwickelten Ausdruck fiir a? allgemein an Stelle von af:af-. .. af
o°r
oot dafy® . . . Dafy
gewisse Exponenten bedeuten, deren Summe gleich 3p ist. Hieraus
folgt insbesondere, dass das Vorzeichen von afrafe...afe in a? iber-
°”
daln palr .. dalr
wir daher Q7 auf a? an, so ergiebt sich eine Summe von lauter
positiven Zahlen: d. h. Q7o ist eine von Null verschiedene
Zahl¥*); diese Zahl werde mit N, bezeichnet.
Es sei nun J(f) eine beliebig vorgelegte Invariante, und dieselbe
andere sich bei der Transformation um die p'* Potenz der Substitutions-
determinante. Die Relation

U 3T ()} = I (N & = I ()

zeigt dann, wie die Invariante J(f) durch das angegebene Verfahren
erhalten wird und somit folgt die Richtigkeit der obigen Behaunptung.

Auf diese Betrachtungen griindet sich der erstrebte Beweis fiir
die Endlichkeit des vollen Invariantensystems im terniren Formen-
gebiete. Der erste zu diesem Beweise fithrende Schritt ist der nim-
liche, wie vorhin im Falle der bindren Formen und wir nehmen dem-
gemiss wiederum an, es seien aus der Gesammtheit der Invarianten
der Grundformen fO, f@ ... f® die m Invarianten ¢,,4,,..., 0
derart ausgewihlt, dass eine jede andere Invariante J jener Grund-
formen in der Gestalt
(45) i=A,4 + 4,4, 4 - - + Anin
ausgedriickt werden kann, wo 4,, 4,,..., 4, ganze homogene Fune-
tionen der Coefficienten der Grundformen sind.

Der zweite Schritt besteht darin, zu zeigen, dass in dem Ausdrucke
At F Ayiy - - -+ Apiy die Functionen 4,, 4,, ..., Ay stets
durch Invarianten ersetzt werden kOnnen, ohne dass sich dabei der
Werth ¢ des Ausdruckes #ndert. Zunichst beachten wir, dass eine
Invariante ihrer Definition nach in den Coefficienten einer jeden einzelnen
Grundform homogen ist. Es seien die Invarianten ¢,4,%, ..., % jn

einsetzen, wo 1, 2, 3" die

den Differentialquotienten

elnsetzen: WO D113 Pras-+s P33

den Differentialquotienten

einstimmt mit dem Vorzeichen von in Q7; wenden

*) Vgl. A. Clebsch, L c. 8. 12, wo die letztere Thatsache im Wesentlichen
auf dem nimlichen Wege bewiesen worden ist.
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den Coefficienten der ersten Grundform [ beziehungsweise vom Grade
7y 1y Yoy +«+y ¥m. Da die linke Seite in Formel (45) demnach unur
Glieder vom Grade » in den Coefficienten von f enthilt, so diirfen
wir auf der rechten Seite der nimlichen Formel allgemein in den
Funectionen 4, alle diejenigen Glieder unterdriicken, deren Grad in
den Coefficienten von @ kleiner oder grosser als 7 — 7, ist, Wenn
wir in gleicher Weise die Grade in Bezug auf die Coefficienten der
iibrigen Grundformen reduciren, so gelangen wir schliesslich zu der
Gleichung
4 == B,% -+ Byiy + -+ - + Buin

wo die Funetionen B,, B,, . . ., B, in den Coefficienten jeder einzelnen
Grundform homogen sind. In dieser Gleichung setzen wir an Stelle
der Coefficienten der Grundformen f®, f@, ... f® die entsprechen-
den Coefficienten der transformirten Grundformen f,®, f,®,..., f®
ein und benutzen dann die Invarianteneigenschaft von i, %, %5, . . ., ¥n;}
dadurch ergiebt sich

. a'i = aple (fa)il + “&Bz(ﬁt)iz +---+ o®m m(ﬁ)im;
wo p, p; die Gewichte der Invarianten ¢, 4, und wo B, (f,) die ent-
spreechenden Functionen der Coefficienten der transformirten Grund-

formen £,®, £,®, ..., fi® sind. Wenden wir auf die erhaltene Relation
p mal das Differentiationssymbol Q, an, so folgt

Qf {a'} i = Q¥ {a” By(f} -4y + QUAa” By(fa)} o + - -
+ Q2 {a"=Bu(fo)} - i

und, wenn wir durch die von Null verschiedene Zahl N, = QF {a?}
auf beiden Seiten dividiren, entsteht eine Gleichung von der Gestalt

=7+ Jpiy+ - - -+ Juin,

wo unserem vorhin bewiesenen Satze zufolge die Ausdriicke

Jo= - Q{a" B, ()} (=12, ...,m)
»

Invarianten der vorgelegten Grundformen f®, f®, ..., f® sind.
Unterwerfen wir diese Invarianten J, oJ,, ..., J, der nimlichen
Behandlung, wie vorhin die Invariante ¢, so folgt, dass auch diese
Invarianten durch lineare Combination aus ¢, 4,, ..., 4, erhalten
werden konnen, wobei die als Coefficienten in der linearen Combination
auftretenden Functionen wiederum Invarianten sind. Da sich aber bei
jedesmaliger Wiederholung' dieses Verfahrens die Gewichte der dar-
Zostellenden Invarianten vermindern, so bricht dag Verfahren ab, und
wir erhalten schliesslich eine ganze und rationale Darstellung der In-
variante ¢ mit Hiilfe der m Invarianten 4,, ¢,, ..., 4n. Damit ist der
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erstrebte Beweis fiir ternfire Grundformen mit einer Verinderlichen-
reihe erbracht.

Aber es geschah lediglich im Interesse einer kiirzeren Dar-
stellung, wenn wir uns im Vorhergehenden auf diesen Fall beschriankten
und wir sehen nachtriglich leicht ein, dass unsere Schliisse sich ohne
Weiteres auf den Fall von Grundformen mit » Verinderlichen iiber-
tragen lassen. An Stelle des vorhin benutzten Differentiationsprocesses
tritt dann der allgemeine Differentiationsprocess

Q= 2+ 0 ’ (1’: 2.0 n =1, 2,...,m)

'—aalltaazz' e .y aam'

WO @y, (o, -+ + +5 Quy die n? Coefficienten der linearen Substitution der
n Verinderlichen bedeuten.

Enthalten ferner die Grundformen mehrere Verinderlichenreihen,
welehe simmtlich der nimlichen linearen Transformation unterliegen,
so bleibt das obige Verfahren ebenfalls genau das gleiche und selbst
in dem Falle, wo mehrere Verinderlichenreihen in den Grundformen
auftreten, welche theilweise verschiedenen linearen Transformationen
unterworfen sind, bedarf es pur eines kurzen Hinweises, in welcher
Art die obige Schlussweise zu verallgemeinern ist.

Es sei ein System von Grundformen f®0, f@, ... f® mit einer
terniren Verinderlichenreihe z,, #,, #; und mit einer biniren Verinder-
lichenreihe &, £, vorgelegt, welche gleichzeitig und zwar mittelst der
Formeln

Zy == @Yy + @Y + ay3Ys, Qyy Gy Oy3

Zy == Aoy Yy + Co¥y + Go3¥s, Q== | Qg gy Gyg

Xy == Q1 Yy + U3oYs + G33Y3, A3y Q3p Qs
— i

) =y -+ a9, 8y Q49

§2 == Oy N + €07,

zu transformiren sind. Nach Ausfiihrung dieser Transformation gehen

die Formen 0, /&, . ., f® iiber in die Formen f{), f&, .. . f®,

deren Coefficienten sowohl die Substitntionscoefficienten a,,, &, ,...,a55
als auch die Substitutionscoefficienten oy, ay,, @, @,, enthalien.
Unter einer Invariante in Bezug auf diese Transformationen verstehen
wir dann einen in den Coefficienten jeder einzelnen'Grundform homogenen
Ausdruck, welcher sich nur um Potenzen der Substitutionsdeterminanten
o und « #ndert, wenn wir in demselben fiir die Coefficienten der
Grundformen fO, f® .. . f® die entsprechenden Coefficienten der
transformirten Grundformen /&, f® ,. .., f® einsetzen. Unserem oben

bewiesenen Satze entspricht dann im vorliegenden Falle der folgende
Satz:

Gay g
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Es sei F(f,.) irgend eine ganze Function der Coefficienten der
transformirten Formen {1, /@, ...,f®, welche in den Coefficienten
jeder einzelnen Form homogen ist. Multipliciren wir diese Function
F(foe) mit a?e*, wo g und % beliebige nicht negative ganze Zahlen
sind und wenden wir dann auf das Product a?ca* F(f,,) jeden der
beiden Processe

“ 0041008220033 00440300z 00120 a3 0tz 00430 tgy Glgy
0° o3
+ 3“133“213“32 0030002003
und
Q=% __
e oy dup Oty Oty

so oft an, bis sich ein von den Substitutionscoefficienten a,,, a,,,...,a5;,
Cyyy Ooyy Oy, Gy freier Ausdruck ergiebt, so ist der entstehende Aus-
druck eine Invariante der Grundformen fO, f@ ..., f® in dem ver-
langten Sinne.

Der Beweis dieses Satzes entspricht vollkommen dem vorhin fiir
Formen mit einer terniren Verénderlichenreihe ausfiihrlich dargelegten
Beweise und ebenso erkennt man ohne Schwierigkeit, dass auch um-
gekehrt jede Invariante erhalten werden kann, indem man auf eine
geeignet gewahlte Function der Coefficienten der transformirten Formen
die Differentiationsprocesse Q, und Q, in der durch den obigen Satz
vorgeschriebenen Weise anwendet.

Um nun die Endlichkeit des vollen Systems der in Rede stehenden
Invarianten darzuthun, nehmen wir wiederum an, es seien die m In-
vananten ¢, é,, . . ., ¢, derart ausgewahlt, dass jede andere Invariante
¢ in der Gestalt

t=A4 + Ayéy + - - + Aunin
ausgedriickt werden kann, wo 4,, 4,, ..., 4, ganze homogene Func-
tionen der Coefficienten der Grundformen sind. Aus dieser Relation
erhalten wir auf dem nimlichen Wege wie vorhin eine Relation von
der Gestalt

¢==Bi; + Byiy + - - - + Buin
wo die Functionen B, , B,, . . ., B, in den Coefficienten jeder einzelnen
Grundform homogen sind. Setzen wir in dieser Gleichung an Stelle der
Coefficienten der Grundformen f0, /@, .. @ die entsprechenden*Coefﬁ-
cienten der transformirten Grnndformen f O, 13, ..., f® ein, so folgt

wpa’tz — a}’xu“LBi (faa) 4 + . s a + a?m“ﬂm m(faa)im°

Die Anwendung des Differentiationsprocesses Q7 Q7 und die Division
durch die von Null verschiedene Zahl

Q7 {a?d"} = N,N,
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filhrt schliesslich zu einer Gleichung von der Gestalt

t=dyiy F i+ - - + Juin,
wo oy, Jy, .., Jn Invarianten der Grundformen in dem verlangten
Sinne sind. Diese Formel fiihrt nach wiederholter Anwendung zu einer
ganzen rationalen Darstellung der Invariante 7 mit Hiilfe der m In-
varianten z1 s By s n oy Une

Auch in dem eben behandelten Falle sehen wir nachtriglich leicht
ein, dass die angewandte Schlussweise sich ohne Weiteres auf den
Fall iibertragen lisst, wo die gegebenen Grundformen beliebig viele,
den nimlichen oder verschiedenen Transformationen unterliegende
Verinderlichenreihen enthilt. Wir sprechen daher den allgemeinen
Satz aus:

Theorem V. Ist ein System von Grundformen mit beliebig vielen
Veriinderlichenreihen gegeben, welche in wvorgeschricbener Weise den
néimlichen oder verschiedenen linearen Transformationen unterliegen, so
giebt es fiir dasselbe stets eine endliche Zahl von ganzen und rationalen
Invarianten, durch welche sich jede andere ganze und rationale Invariante
m ganzer und rationaler Weise ausdriicken ldsst.

Was die sogenannten Covarianten und Combinanten von Formen-
systemen bestrifft, so fallen diese Bildungen simmtlich als specielle
Fille unter den oben behandelten Begriff der Invariante. Fiir diese
invarianten Bildungen folgt also ebenfalls aus Theorem V die End-
lichkeit der vollen Systeme. Das Gleiche gilt von den sogenannten
Contravarianten und allen anderen invarianten Bildungen, bei welchen
gewisse aus mehreren Reihen von Veriinderlichen zusammengesetzte
Determinanten ihrerseits als Verfinderliche eintreten®). Diese Bildungen
kann man dadurch unter den oben zu Grunde gelegien Invarianten-
begriff fassen, dass man geeignete Formen ‘mit mehreren Verfinder-
lichenreihen za den schon vorhandenen Grundformen hinzufiigt, Wenn
dies geschehen ist, lassen sich die bisherigen Ueberlegungen unmittelbar
iibertragen und es folgt daher insbesondere auch fiir alle solchen in-
varianten Bildungen die Endlichkeit des vollen Systems. Als Beispiel
fiir diesen Kall diene ein System von” Grundformen, in welchen die
6 Liniencoordinaten p;; die Verinderlichen sind.

Anders verhilt es sich jedoch, sobald wir die Verallgemeinerung
des Invariantenbegriffes in einer Richtung vornehmen, wie sie durch
die Untersuchungen von F. Klein**) und S. Lie**¥) bezeichnet ist.

*) Vgl E. Study, Ueber den Begriff der Invariante algebraischer Formen,
Berichte der kgl, siichs. Ges. der Wiss. 1887, §. 142,
) Vgl, die Programmschrift: ,,Vergleichende Betrachtungen iber reuere
geometrische Forschungen.” Erlangen 1872,
¥ Vgl. die Vorrede des Werkes: ,,Theorie der Transforinationsgrappen.”
Leipzig 1888.



532 Davip Hirserr,

Bisher nimlich hatten wir die Invariante definirt als eine ganze
homogene Function der Coefficienten der Grundformen, welche gegen-
iiber allen linearen Transformationen der Verinderlichen die In-
varianteneigenschaft besitzt. Wir wihlen nunmehr, jener allgemeineren
Begriffsbildung folgend, eine bestimmte Untergruppe der allgemeinen
Gruppe der linearen Transformationen aus und fragen nach denjenigen
ganzen homogenen Functionen der Coefficienten der Grundformen,
denen nur mit Riicksicht auf die Substitutionen der ausgewihlten
Untergruppe die Invarianteneigenschaft zukommt. Obwohl unter diesen
Invarianten offenbar alle Invarianten im fritheren Sinue enthalten sind,
so folgt doch aus unseren bisherigen Sitzen iiber die Endlichkeit der
vollen Invariantensysteme noch nicht, dass auch unter den Invarianten
im erweiterten Sinne sich jederzeit eine endliche Anzahl auswéhlen
lasst, durch welche jede andere Invariante der nimlichen Art ganz
und rational ausgedriickt werden kann,

Die bisherigen Entwickelungen und Ergebnisse lassen sich auf
die Theorie der Invarianten in dem erweiterten Sinne allemal dann
unmittelbar iibertragen, wenn die Coefficienten der die Gruppe bestim-
menden Substitutionen ganze und rationale Funectionen einer gewissen
Anzahl von Parametern sind derart, dass durch Zusammensetzung
zweier beliebigen Substitutionen der Gruppe eine Substitution entsteht,
deren Parameter bilineare Functionen der Parameter der beiden
urspriinglich ausgewihlten Substitutionen sind und wenn es zugleich
einen Differentiationsprocess giebt, welcher sich in entsprechender
Weise zur Erzeugung der zur vorgelegten Gruppe gehorigen Invarian-
ten verwenden lisst, wie der Differentiationsprocess Q im Falle der
zur allgemeinen linearen Gruppe gehorigen Invarianten. Fiir solche
Substitutionengruppen ergiebt sich stets durch unser Schlussverfahren
die Endlichkeit des zur Gruppe gehtrigen Invariantensystems.

Um kurz zu zeigen, wie der Beweis in solchen Fillen zu fithren
ist, betrachten wir die Gruppe der terniren orthogonalen Substitutionen
d. h. die Gruppe aller derjenigen linearen Substitutionen von drei
homogenen Veridnderlichen, bei deren Ausfithrung die Summe der Quadrate
der Verinderlichen ungeiéindert bleibt. Die Transformationsformeln fir
diese Substitutionen sind bekanntlich

zy = (a’+a’—as?—a’)y, — 2(a a3+ a,0,) Y,
- 2(aya,— 0, a3)Ys,

Ly == 2(a 05— ara0)y, + (2 — a'—ag?+ a2y,
- 2(ay 0, 050,) Ys,

Zy =2 (aya,+ ayas)y, + 2(aya,— asa.)y,

+ (a*— a2+ at —ad)ys,
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WO @y, Oy, a3, @, die 4 homogenen Parameter der Substitutionengruppe
bedeuten. Die Gruppeneigenschaft dieser Substitutionen bestitigt sich
leicht, wenn man in den eben angegebenen Formeln an Stelle der
Parameter a,, a,, a5, a, andere Grossen eintrigt und die so erhaltene
Substitution mit der urspriinglichen zusammensetzt. Was die zu dieser
Substitutionengruppe gehdrigen Invarianten betrifft, so gilt der folgende
Satz:

Wenn man ein System von terniren Grundformen vermbge der
angegebenen Substitutionsformeln linear transformirt und auf eine
beliebige homogene Function der Coefficienten der transformirten
Grundformen das Diﬁ’erentiationssymbol

Q = 3%2 + 3%2 + 3“32 + a%

so oft anwendet, bis sich ein von den Parametern a,, a,, a3, ¢, freier
Ausdrack ergiebt, so besitzt dieser Ausdruck die Invarianteneigenschaft
gegeniiber der durch jene Formeln definirten Substitutionengruppe.
Das gleiche gilt, wenn jene homogene Function der transformirten
Coefficienten noch zuvor mit einer beliebigen ganzen Potenz des Aus-
druckes a,? + @,® 4+ a;? + a,2 multiplicirt wird.

Die Anwendung dieses Satzes ermdglicht den gesuchten Beweis
der Endlichkeit des vollen Invariantensystems, wie man leichf erkenni,
wenn man die Entwickelungen des frilheren Beweises auf den vor-
liegenden Fall iibertrigt.

Ein anderes Beispiel liefert diejenige Gruppe, welche die folgenden
quaterniren Substitutionen enthilt

z =a?® Y+ 3a’a, ¥, + 344 a° Y+ @ Yy,
T, = alaz ¥y + (620,420 a,a3)Y, + Caaya,-+ a2 as)y; + a’ay,,
Ty = a, a5%y; + (2a,030,+ a,0.2)Y, + (a4 620,050 Y3 + 2, 0.°Y,,
T, =a y; + 3ala, Y -+ 3a;a,’ Ys.+ a® ¥,

Deuten wir die Veriinderlichen als homogene Coordinaten der Punkie
des Raumes, so stellen diese Formeln mit den veréinderlichen Para-
metern a,, @,, 0, a, alle linearen Transformationen des Raumes dar,
bei welchen eine gewisse Raumcurve dritter Ordnung ungeéndert bleibt.
Durch die entsprechenden Betrachtungen wie vorhin folgt amch fiir
diesen Fall die Endlichkeit des vollen Invariantensystems.

Nachdem fiir ein vorgelegtes System von Grundformen die In-
varianten simmtlich aufgestellt worden sind, entsteht die weitere Frage
nach der gegensexhgen Abhanglgkelt der Invarianten dieses endlichen
Systems. Fiir eine derartige Untersuchung dienen wiederum die
Theoreme I und III als Grundlage. Wenn wir nidmlich in den dort
auftretenden Formen eine der » homogenen Verinderlichen der Einheit
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gleich setzen, so erkennen wir unmittelbar, dass jene beiden Theoreme
auch fiir nicht homogene Functionen giiltig sind und es ist somit
insbesondere die Anwendung derselben auf die zwischen den Invarianten
bestehenden Relationen gestattet. Verstehen wir nun in iiblicher Aus-
drucksweise unter einer irreduciblen Syzygie eine solche Relation
zwischen den Invarianten des Grundformensystems, deren linke Seite
nicht durch lineare Combination von Syzygien niederer Grade erhalten
werden kann, so folgt aus Theorem I der Satz:

FEin endliches System von Inmvarianten besitzt nur eine emdliche
Zahl von irreduciblen Syzygien.

Als Beispiel diene das volle Invariantensystem von 3 bindren
quadratischen Grundformen, welches bekanntlich aus 7 Invarianten
und 6 Covarianten besteht. Es lisst sich zeigen, dass es fiir dieses
Invariantensystem 14 irreducible Syzygien giebt, aus denen jede andere
Syzygie durch lineare Combination erhalten werden kann.

Die Aufstellung des vollen Systems der irreduciblen Syzygien ist
aber nur der erste Schritt auf dem Wege, welcher gemiss den oben
in den Abschnitten I, III und IV allgemein entwickelten Principien zur
vollen Erkenntniss der gegenseitigen Abhingigkeit der Invarianten
fithrt. Denn zwischen den Syzygien ihrerseits bestehen gleichfalls im
Allgemeinen lineare Relationen, sogenannte Syzygien zweiter Art,
deren Coefficienten Invarianten sind und welche wiederum selber durch
lineare Relationen, sogenannte Syzygien dritter Art, verbunden sind.
Was die Fortsetzung des hiedurch eingeleiteten Verfahrens anbetrifft,
so muss dasselbe nach einer endlichen Zahl von Wiederholungen noth-
wendig abbrechen, wie unser Theorem ITI lehrt, wenn man dasselbe in
der vorhin angedeuteten Weise auf nicht homogene Functionen iibertrigt.
Wir gewinnen somit den Satz;

Die Systeme der irreduciblen Syzygien erster Art, zweiter Art u s. f.
bilden emme Kette abgeleiteter Gleichungssysteme. Diese Syzygienkette
bricht im Endlichen ab und zwar giebt es keinenfalls Syzygien von
hoherer als der m .- 1% Art, wenn m die Zahl der Imvarianten des
vollen Systems bezeichnet.

Zur vollstindigen Untersuchung eines Invariantensystems bedarf
es in jedem besonderen Falle der Aufstellung der ganzen Kette von
Syzygien. Nach den Erorterungen des Abschnittes IV sind wir dann in
der Lage, die linear unabhingigen Invarianten von vorgeschriebenen
Graden anzugeben, und zwar ausgedriickt als ganze rationale Func-
tionen der Invarianten des vollen Systems.

Ko6nigsberg in Pr. den 15. Februar 1890.



