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Die Endlichl~eit der Formen in einem beliebigen Formensysteme. 

Unter einer algebraischen Form verstehen wir in tiblicher Weise 
eine ganze rationale h omog en e Function yon gewissen Ver~nderlichen 
und die Coefficienten der Form denken wit uns als Zahlen eines be- 
stimmten Rationaliff4~sbereiches. Ist dann durch irgend ein Gesetz 
ein System yon unbegrenzt vielen Formen yon beliebigen Ordnungen 
in den Ver~nderlichen vorgelegt, so entsteht die Frage, ob es stets 
mSglieh ist, aus diesem Formensysteme eine endliche Zahl yon Formen 
derart auszuw~hlen, class jede anclere Form des Systems durch lineare 
Combination jener ausgew~iJalten Formen erhalten werden kann, d.h.  
ob eine jede Form des Systems sich in die Gestalt 

bringen l~sst, wo El ,  F2, . . . ,  F~ bestimmt ausgewKhlte Formen des 
gegebenen Systems und A1, A 2 , . . . ,  Am irgendwelche, dem n~,mlichen 
Rationalif~tsbereiche angehSrige Formen der Ver'~nderlichen sind. Um 
diese Frage zu entscheiden, beweisen wir zun~hst das folgende ffir 
unsere weiteren Untersuchungen grundlegende Theorem: 

*) Vgl. die vorl~,ufigen Mit~eilungen des Verfassers: .Zur Theorie der 
algebraischen Gebilde", Nachrichten v. d. kgl. Ges. d. Wiss. zu GSi~ingen, 1888 
(erste Note) und 1889 (zweite und d~itte Note). 
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T h e o r e m I. Is t  irgend eine nicht abbred~mde Reihe yon Formen 
der n Ver nderlichen . . ., x ,  .vorgelegt, etwa F2,  F3, . . . ,  
so giebt es stets eine Zahl m yon der Ar t ,  dass eine jede Form jener 
l~eihe sich in die Gestalt 

A , P ,  + .  1z2 + . . .  + 

bringen liisst, wo A1,A.~,  . . . ,  Am geeignete Formen tier n~imlichen n 
~Z er ~nderlichen sind. 

Die Ordnungen der einzelnen Formen der vorgele~en Reihe sowie 
ihre Coefficienten unterliegen keinerlei Besehr~inkungen. Denken wir 
uns die letzteren als Zahlen eines bestimmten Rationalit~tsbereiches, 
so dfirfen wit annehmen~ dass die Coefficienten der Formen Aj, A2,..., A~ 
dem n~mlichen Rationalif~tsbereiche angehSren. Was die Ordnungen 
der Formen A1, A 2 , . . . ,  A~ betrifft, so mfissen dieselben jedenfalls 
der Bedingung genfigen, dass der mit Hiilfe dieser Formen gebildete 
Ausdruck 

wieder eine h o m o g e n e Function der n Ver,inderlichen darstellt und 
es sei hier zugleich auch ftir die ferneren Entwickelungen bemerkt, 
dass in allen F~llen, woes  sich nm eine additive Vereinigung oder 
lineare Combination mehrerer Formen handelt, die Ordnungen der 
Formen so zu ws sind, class die H o m o g e n i t ~ t  der entstehenden 
AusdrRcke gewahrt bleibt. 

In dem einfaehsten Falle n ~ 1 besteht eine jede Form der vor- 
gelegten Reihe nut aus einem einzigen Gliede yon der Gestalt cx~ wo 
c eine Constante bedeutet. Es sei in tier vorgelegten Reihe c I x ~, die 
erste Form, ffir welche der Coefficient c, yon Null versehieden ist. 
Wi t  suchen nun die n~chste auf diese Form folgende Form tier Reihe, 
deren Ordnung kleiner ist als r,; diese Form sei c2xr,'und es ist dann 
wiederum die n~ehste auf letztere Form folgende Form der Reihe zu 
bestimmen, deren Ordnung kleiner ist als r2; diese Form sei c3x',. 
Fahren wit in solcher Weise fort, so gelangen wir jedenfalls sp~testens 
nach rl Sehritten zu einer Form Fmder vorgelegten R eihe, auf welehe 
keine Form yon niederer Ordnung mehr folgt und da mithin eine jede 
Form der Reihe dureh diese Form F~ theilbar ist, so ist m eine Zahl 
yon der Besehaffenheit, wie sie unser Theorem verlangt. 

Aneh ffir den Fall n ~ 2 l~sst sieh unser Theorem I. auf ent- 
spreehendem Wege ohne Schwierigkeit beweisen. Es genfige die 
folgende kurze Andeutung dieses Beweises. Wenn die bin~ren Formen 
tier vo{gelegten Formenreihe s~mmtlieh die n~mliehe bin~re Form als 
gem~n.~amen Factor enthalten, so sehaffen wit zan~chst diesen Factor 
: ~ l ~ : D i ~ s i o n  fort. Es ist sodann stets mSglieh, aus den Formen 
:r erhaltenen Reihe durch lineare Combination zwei bin~re Formen 
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G und / / z u  bilden, welche keinen gemeinsamen Factor besi~en. Ist 
dies geschehen, so l~isst sich jede beliebige bin~ire Form /7, deren 
Ordnung nicht kleiner ist als die Summe r der Ordnungen der Formen 
G und H in die Gestalt 

E - - ~ A G . . { -  B H  

bringen, wo A und B geeigne~ zu besfimmende Formen sin& Im 
Besonderen ist daher auch jede in der Reihe enthal~ene Form, deren 
Ordnung die Zahl r erreich~ oder fibersteig~, einer linearen Combi- 
nation der Formen G und H gleich. Was endlich die Formen der 
Reihe anbetrifi~, deren Ordnungen kleiner als die Zahl r sind, so 
kann man unter diesen jedenfalls eine endliche Anzahl derart aus- 
w~hlen, dass alle anderen Formen der Rieihe linearen Combinationen 
der ausgew~hlten Formen gleich sind. 

Will man in ~hnlicher Wei~e unser Theorem I. ffir den Fall 
tern~rer Formen beweisen, so wiirde vor Allem der N o e t h e r ' s c h e  
Fundamenfalsatz*) yon den Beding~ngen der DarsCellbarkeit einer 
terniiren Form durch zwei gegebene Formen anzuwenden sein und 
hierbei w~re dann eine sorgf's Untersuchung alter mSgliehen 
AusarCungen des dutch Nullse~zen der beiden gegebenen Formen deft- 
nirt~n Wer~hesystems erforderhch. Da die dutch diesen Umstand be- 
dingten Schwierigkeiten mit der Zaht n der Ver'~nderlichen immer 
sti4rker zunehmen, so schlagen wir zum Beweise des Theorems einer, 
anderen Weg ein, indem wir allgemein zeigen, wie sich der Fail tier 
Formen yon n Veriinderlichen auf den Fall yon n - -  I Ver~nderlichen 
zurtickftihren li4sst. 

Es sei ~1,  F2, .F3,  . . .  die gegdbene Reihe yon Formen der n 
Ver~nderliehen x l ,  x~, . . . ,  x,, und ~ sei eine nicht identisch ver- 
schwindende Form yon der Ordnung r. Wir bestimmen dann ztmiiehst 
eine lineare Substihation der Ver~inderlichen x l ,  x 2, . . . ,  x~, .  welche 
eine yon Null verschiedene Determinante besitzt und ausserdem die 
Form E 1 in eine Form G 1 der Ver~nderlichen Yl, Y~ - - ,  Y~ derart 
fibefffihrt, class der Coefficient yon ~ in tier Form d~ 1 einen yon Null 

verschiedenen W e r ~  annimmt. VermSge der nKmlichen linearen Sub- 
s~itution mSgen die Formen 2'2~/~3,--: beziehungsweise in G2, {~, . . .  
iibergehen. Betrach~en wit nun eine Relation yon der Gestalt 

wo s ixgend einen Index l~r mad B ~  ~ , . . . ,  B~ Forme~ der 
Ver~derlichem y~, y ~ , . . . ,  y,~ s ind ,  so geht dieselbe vermSge der um- 
gekehrfen linearan S ubsti/mfion in eine Relation yon tier Gestalt 

*) u M. Noether, Math. Ann. I~t. 6 ~ d  30, sowie A. Voss, Math. Ann. 
Bd. 27 ~ d  L. St ickelberger,  Math. Ann. Bd. ~ .  

31" 
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F. = A1 P1 + A2 2 + . . .  + 
fiber, wo A t , A 2 , . . . ,  A m  Formen der urspriinglichen VerRnderlichen 
xl, x2, ..-~ x~ sind. Es folgt daher unser Theorem I. ffir die ursprfin#ich 
vorgelegte Formenreihe ~'i, t?2, -~'3, ---, sobald der Beweis des Theorems 
ftir die Formenreihe Gl,  G-2, G a, . . .  gelungen ist. 

Da der Coefficien~ yon y~, in G 1 einen yon Null verschiedenen 

Werth besitzt, so lisst  sich der Grad einer jeden Form G, der ge- 
gebenen Reihe in Bezug auf die Veriinderliche y~ dadurch unter die 
Zahl r herabdriicken, dass man Gt mi~ einer geeigneten Form ~ ,  
mulfipticirt and das erhaltene Produc~ yon G, subtrahir~. Wir  setzen 
dementsprechend Ftir beliebige Indices s 

G , ~ -  B,G~ + g , 1 ~  -1 + g,~ ~y~-~ + - - -  + g,~, 

wo ~ ,  eine Form der n Veriinderliehen Yl, Y2, - - . ,  Y~ ist, wiihrend 
die Formen g,i~ g,~, ..., g ~  mlr die n - -  1 Veriinderlichen Yt, Y2,--.,Y~-t 
en~halten. 

Wir  nehmen nun an,  dass unser Theorem I. ftir Reihen yon 
Formen mit ~ -  1 Ver~der l ichen  bereits bewiesen isi und wenden 
dasselbe auf die Formenreihe g~l ,g21 ,ga l , . . ,  an .  Zufolge des Theorems I. 
gieb~ es dann eine Zahl ~ yon der Art ,  class fiir jeden W e r ~  yon s 
eine Relation yon der Gestalt 

g , l  ~ b , l g t l  + b,2g~l + �9 " " + b ~ , g ~ l  ~-- 1,(g11, g.21, . . . ,  gt, i)  

besteht, wo b,i, b , ~ , . . . ,  b,~, Formen der n ~  1 Veri~nderlichen 
y~, y 2 , . - . ,  y~-i sin& Wir  bilden nan die Formen 

(1) g~) ~ -  g , , -  l , (g~ t ,  g~ , ,  . . ., g v t ) ,  ( t  ~ -  1 ,  2 , . . . ,  r)  

woraus sich insbesondere FOx t - ~  1 

ai =o 
ergiebL Wi t  nehmen hieranf wiederum das Theorem I. fiir den Fall 
yon n -  I Vel4nderliehen in Anspxaich, indem wir dasselbe auf die 

Formem'eihe  v~"(1), g~)  g(~) . . . anwenden. Zufolge dieses Theorems 
gieb~ es dann eine ZaM #o) yon der AI'~, dass ffir jeden Wer~h yon s 
eine Relation yon der Gestalt; 

~(~) xo) b O) Formen der n -  I Ver~aderlichen 

y t ~ y ~ : , . ~ . . , y , . . _ x  sin& Wir  seLzen nun 

- -  - -  ~, (W*, g(~i ), --", Y.(1),), ( t~-  1 ~ ' 2 , . . . , r )  
worans sich insbesondere ffir t-~- 1~ 2 



Ueber die Theorie der algebraischen Formen. 477 

er~ebt. Die Anwendung des Theorems I. auf die Formenreihe 

g ( 2 )  ..(2) _(2) 
~ ,  v ~ ,  va~ , . . ,  ffihr~ zu der Relation 

g(2) #) / . (2)  
- -  0, ( w ,  w ,  

setzen wir dann 

g(2) .~ 
�9 --, ~,(2)~) 

und 
(2) , (3) . ,  a ; (~3  (t = ~, ~ , . . ,  ~) 

so folgt insbesondere 

g~) O, .(3) 0 

Nach wiederholter Anwendung dieses 
Relationen 

(4) v,t"('-l) g~-~) ~(,-2)[..(,-2) _(,-~) A,'-~) ) (t 1, 2, r) 

g~r--1) ~(r--i) (r--i) 
-~--0,  v*s ~ - 0 ,  . . ,  g ~ , , _ ~ - - ~ 0  

und sehliesslich erhiilt man 

g}S) 3-~-0 .  

Verfahrens ergeben sich die 

9•r--1) tr---1)[,~(r--1)~(r--1) ff~(~-l)l r) 
r ~ s ~/Ir ~ y2r 7 " " ") ) 

woraus 

"(~-~) ~-~)/~(~-~) "(~-~) -(~-~) ~, (t ~- I, 2, . .  ~') (5) O ~ v .  - -  ~ tv~t ,v-~t ' ' ' ' % ( , - 1 ) t ]  

folgt. Durch Addition'der Gleichungen (1), (2), ( 3 ) , . . ,  (4), (5) er- 
giebt sich 

g,, 1,(g,,, g2~, ., g , , ) +  ~')(gT, ), -(') g(') ~ + - . .  
7(r--l)/.(r--l) ~(r--l) ~(r--1) \ 

+ ~, ~.vl, , v-2t , . . . ,v~,( ,_l) , ) .  (t ~--- 1, 2 , . . . ,  r). 

Auf der rechten Seite dieser Formel kSnnen wir die Formen 

-(') g(2~t ), . . . .  -, -(') g~-'), v2,"('-'),-- #" - ' )  gl~, y#l)t, ., ., %(~._x) t 
in Folge wiederhol~r Anwendung der Gleichungen (1), (2), (3), . . . ,  (4) 
dutch lineare Combinationen der Formen glt~ g2t, - . ,  g,~t ersetzen~ 
w o m  die g'rSs~e yon den Zahlen g , / t o ) , . . . ~  go.-x) bezeiehnet. Wi t  
erhalten auf diese Weise aus der le~teren Formel ein Gleichangs- 
system yon der Gestalt: 

g , - - ~  c, lg~, + c,2g2, + . . .  + c,,.,,g,,t .-~ k , (g l , ,  g2,, . . . ,  g,~,), 

( t =  1 , 2 , ,  , ~) 
WO c,i ,  c,s, �9 . . ,  e,= 'wiederum Formen der n -  1 Verii~nderliehen 
Yl, Y~., . . -  y~-i sind. Multipliciren wir die le~ztere Formel mit ~ - t  

and addiren die daraus ffir t ~ 1 , 2 ~ . . . ~  r entstehenden Gleiehungen~ 
so folgr wegen 

g** y ~ l  + g,~ ~y~-2 + . . .  + g,.  ~_. G, ..--- B, Ot 

die l!~leiehang 
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a . - -  ~ . a l  =- k.(al - ~ i a i ,  a2 --  BAG,, . . . ,  G~ -- ~ a ~ ) ,  
oder, wenn C, eine Form der n Ver~nderlichen Yl~ Y 2 , - . . ,  Y~ 
bezeielmet 

a . -  v.a~ + ~.(ai, as, . . . ,  a~) ~ L . (a i ,  a2, . . . ,  G~), 
d. h. die Zahl mi s t  fiir die Pormenreihe G1, G:, G a , . . .  und folglich 
auch fiir die urspriinglich vorgeleg~e Formenreihe Fj ,  F: ,  Fa, . . .  
eine so]che Zah|~ wie sie Theorem I. verlang~. Somit; gilt unser 
Theorem L fiir den Fall yon n Ver~uderlichen unter der Annahme, 
dass dasselbe fiir Formen yon ~ -  1 Ver'~nderlichen bewiesen is~. Da 
das Theorem I. fiir eine Reihe yon Formen e ine r  homogenen Ver- 
~inderlichen oben bereiCs als richtig erkannt wurde~ so gilt dasselbe 
allgemein. 

Verm'Sge des Theorems I. li~sst sich vor Allem diejenige Frage 
a~gemein beant~vor~en~ welche zu Anfang dieser Arbeit angeregr 
wurde. Es sei n~mlich ein beliebiges System yon unhegrenz~ vielen 
Formen der n Ver~nderlichen xl~ x2~. . . ,  x~ gegeben~ wobei es frei- 
ges~ell~ is~ ob diese Formen sich in eine Reihe ordneu lassen oder 
in nich~ abz~hlbarer Menge vorhanden sind. Um ein solches Formen- 
system fes~zulegen~ denke man sich ein Gesetz gegeben, vermSge 
dessen ausnahmslos fiir eine jede beliebig angenommene Form en~- 
schieden werden kann~ ob sie zu dem Systeme gehSren soll oder 
nicht. Wit nehmen nun an~ es sei nich~ mSglich, aus dem gegebenen 

"Formensys~em eine endliche Zahl yon Formen derar~ auszuwi~hlen, 
dass jefle andere Form des Systems durch lineare Combination jener 
ausgew~hlt~m Formen erhal~en werden kann. Dann w~hlen wir nach 
WiUkfir aus dem System eine nich~ identisch verschwindende Form 
aus und bezeichnen dieselbe mi~ ~j;  ferner mSge Fe eine Form des 
Systems sein~ welche nicht einem Produc~e yon der Ges~al~ A~/~ 
gleich is~, wo A~ eine beliebige Form der n Ver~uderlichen x~,x~...~ x~ 
bedeute~; ~'~ sei eine Form des Sys~ems~ welche sich nich~ in die 
Ges~lt A~ Fl -{- A ~  bringen l~sst, wo A~ und A~ wiedemm Formen 
yon xl ~ x:~...~ x~ sind. EnCsprechend sei ~'a eine Form des Syst~ems, 
welche sich nieh~ in die Ges~l~ Ai ~F~ -1- A~/7'~ -~- As ~'~ bringen I~.ss~ 
und wenn wit in dieser Weise forffahren, so gewinnen wit eine 
Formem-~ihe ~'~ ~ : , / ~ a , - - . ,  welche zu Folge tier gemachben An- 
nahme ira Endlichen nieht abbreehen kann und in welcher OroCzdem 
keine Form dureh Iineare Combinalion der vorhergehenden Formen er- 
haKen werden kann. Dieses Ergebniss widerspricht unserem Theorem Z 
und da somit die vorhin gemachte Annahme unzul~ssig ist~ so erhal~en 
wit den Safi~: 

Aus dne~ ~ed~ ~d/e~4g ~ Formensysteme ~ s/ch s ~  
eirte e~u~he Zahl yon .Formen derart ausw~hlza~ dass jede ampere 
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Form des Systems dutch lineare Combinatio~ jener ausgew~hlten .~Wormen 
erhaY~m werde~ kann. 

Wir be~rach~en insbesondere solche Formensysteme, denen die 
Eigenschaft znkomm~, dass jedes Product ether Form des Systems mit 
einer beliebigen anderen~ nicht nothwendig zum System gehSrigen Form 
sowie jede in den Ver~nderlichen xl, x ~ , . . . ,  x, homogene Summe 
yon solchen Produc~en el. h. jede lineare Combination yon Formen des 
Systems wiederum dem Sysf~me angehSrt. Ein solches System yon 
unbegrenz~ vielen Formen heisst ein Modul und somit lehnen diese 
Auseinanderse~zungen, soweit sie sp~erhin die Theorie der Moduln 
bei2effen, an diejenige Bezeichnungsweise und Begriffsbestimmung an~ 
welche L. K r o n e c k e r  in der yon ihm begrfindeten und neuerdings 
systematisch ausgebildeten Theorie der Modulsys~eme*) anwende~. Doch 
ist hervorzuheben, dass im Un~erschiede zu den yon L. K r o n e c k e r  
behandelten Fragen bei unseren Untersuehungen, vor Allem in Ab- 
schnitt IH und IV dieser Arbeit, die H o m o g e n i t ~ t  der Functionen 
des Moduls eine wesentliche und nothwendige Voraussetzung bildet. 
Spreehen wit den vorhin bewiesenen Sa~ insbesondere ffir einen Modul 
aus~ so erhalf~n wir unmittelbax den folgenden Satz: 

Aus den Formen eines belieSigen ModuZs 15sst sigh stets eine e~liehe 
Anzahl yon Formen derart ausw~hle% dass jede andere Form des ModuZs 
dutch lineare Combination jener ausgew~hlten Fqrmen erhalgen werde~ 
kann. 

Um ffir diesen Satz ein ansehauliches Beispiel zu gewinnen~ nehmen 
wir eine algebraische Raumcurve als gegeben an und fragen nach dem 
roUen Sys~me dex diese Raumeurve en~haltenden algebraisehen l~ehen. 
Da die linken Seifi~n der Gleiehungen dieser Flgchen qua~erniire For- 
men sind, welehe dureh lineaxe Combination Formen des n~mliehen 
Systems ergeben, so bilden diese Formen einen Modul und tier obige 
Satz erEilt mithin ffir diesen besonderen Fall die folgende Deuhmg: 

Dutch eine gegebene a~geSraische t~aumourve lKsst sich eine end~iche 
Za.%l m vo~ Fl~hen 

F ,  o ,  ---- o ,  . .  ---- o 

hindurch~ege~ derart, dass jede andere die C,u~ve e n t ~  a~braische 
~iic~e dutch eine Gleichung yon der Gestalt 

~) VgL L. Kronecker,  Crelle's Journal, B& 92, l~ag- 70.-: 122, Bd. 93, 
pag. 365--366, Bd. 99, l~g. 329--371, BcL 100, pag. 490--510- B ~  
Sitzungsberichte, t888 pag. 249--258, ~ - - ~ ,  331--35~, ~ 8 9 ~  615--648; 
und femer: R. Dedek ind  and H. Weber,  Crelle's J o ~  B~. 92, t~g, I81---23~ 
s~wie J. Molk,  Acta mathematica ~ 6, pag. 50-~165. 
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dargestdlt werden kann, wo unto" At,  A2,. ~., A= quaternh're Formen 
~u verstehen sin~*). 

Beispielsweise sei eine eubische Raumcurve dutch die Gleichungen 

(6) 

gegeben ~ wo x~, x~, x a ~ xa die homogenen Coordinaten ihrer Punkte 

gehen die 3 Ft,,then 

F~ ~0 ,  
hindurch, wo 

die homogenen Parameter sin& Dutch diese Raumcurve 

kSnnen wit setzen 

F1 ~-  xlxa - -  x / ,  

F2 ~ x:x3 - -  x jx4 ,  

~ - ~  x2 x4 - -  x /  

quadratische Formen bedeuten, yon denen keine durch li~eare Com- 
bination der beiden anderen erhalten werden kann. Um nun zu zeigen, 
dass auch jede andere die Raumcurve en~altende Fl~che sich durch 
eine Gleichung yon der Gestalt 

dars~ellen l~iss~, nehmen wir an, es sei 

eine Form, welche bei hnwendung der Subsfiitution (6) identisch gteich 
Null wird. Mit Hfilfe der Congruenzen 

x,z~--  x2r (P~, F2, 2~3), 
x, x4-~ xr (2~1, 2~2, 2% 
x~4 ~ ~, ,  (~',, ~ ,  ~'~) 

worin C~1,~, C ~ ,  C~,g, wiederum gewisse Zahlencoefiicienten bedea~en. 
Ausserdem daft angenommen werden, dass keiner der beiden Expo- 
nenf~n L~ und ~a gleich Null L~, da entgegengesetz~r~nfalts das be- 
treffende (}lied sich aus der zwei~en Summe enf~eder in die erste c~ler 

Die bier erledigte Frage ~ch tier En~'chkeit der eiae Raumcurve ent~ 
h~enden F~chen wi~ her~i~s G. Salmon in seinem Lehrb~he auf; vgL ana- 
lyfische Qeome~-ie des Raumes, Theft II/79, 

F2-~O,  F3~O 
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in die dritte Summe hineinziehen l~sst. 
rechten Seite yon (7) ist 

und hiexaus folgt 

Fiibxen wir jetzt 

Wegen der Homogenit~t der 

3 ~  ~ 2 z~ :> 2 ;t~ -f- Z s :> ~s- 
vermSge der Gleichungeu (6) die Parameter ~ ,  ~ 

in der rechten Seite yon (7)ein,  so erkennen wir, dass keines der 
so entstehenden Glieder C~'  ~ sich mit einem in der ngmlichen oder 
in einer anderen Summe entstehenden Gliede vereinigen kann und da 
andererseits der Ausdruck auf der rechten Seite yon (7) nach jener 
Substitution (6) verschwinden soll, so ~ind nothwendigerweise die Coeffi- 
cienten Cx, x~, C~, ,  C ~ ,  sgmmtlich gleich Null. Aus der Congruenz 
(7) erhalten wit somit 

oder 

Eine anderweitige Verwendung finden unsere allgemeinen Ent- 
wickeluugen in der Theorie der Gleichungen, wenn man nach den- 
jenigen ganzen homogenen Functionen der Coefficienten einer Gleichung 
frag~, welche verschwinden, sobald die Gteiehung eine gewisse Anzaht 
vielfacher Wurzeln besitzt. Da das System aller dieser Functionen 
einen Modul bildet, so erhalten wir den Satz: 

~s giebt eine endliche Anzahl yon ganzen homoge~wn ~unctionen 
der Coeffwienten einer algebraische~ Gleichu~g, welche verschwinde~, 
sobald die Gleichung eine gegebene Zatd vidfacher Wur~an erh#~ u ,~  
aus wetvhen sich eine jede andere gauze ~'unction yon derselbe~ ~igen- 
schaft in linearer Weise zusamme~e2zen liisst. 

Sollen beispielsweise alle diejenigen homogenen ~unctionea der 
Coeffieienten xl, x2, x3, x~, x 5 der bin~ren Form 4 ter Ordnung 

r = xl~14 -q- 4X2~13~2 --~ 6X3~I~  2 -J/- 4X4~!~2 3 + XS~2 4, 
angegeben werden, welche verschwinden, sobald die Form (p eine 
volle 4 t~ Potenz wird, so bedarf es dazu der folgenden 6 quadratischen 
Formen 

F2 = x,  x4 - -  x2xa,  

1~ 3 = x l x s - -  x2x4,  

~4  ~ -  x~ x5 - -  x~ ~, 

F5 - -  x2x~ - -  x3x4,  

. v .  - -  - r  

and man fiberzeag~ sieh olmr : ~ w i e  ~'r~keit auf dem ea~spr~headea 
Wege wie vorhin, class-jede~ a~adere Function F yon ~der verlangten 
Eigensch~t in die Gestalt 
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gebrach~ werden kann, wo A,, .42, . . . ,  .46 homogene Functionen yon 
x~, z~, z 3 , z4, xs sin& 

Will man zweitens alle diejenigen homogenen Functionen der 
Coeflicienten yon r angeben, welche verschwinden, sobald die binKre 
Form ~ ein volles Quadrat wird, so ist es n5thig, die folgenden 7 
F~mctionen zu bilden 

F~ = x,~x~ - -  3x l x~x  ~ nU 2x23 , 

F 2 ~ Xt~X5 -}- 2XlX2X4 - -  9XlXs ~ -}- 6x~2xa, 

F a ------XlX~X s - - 3 X l X 3 X  a "~ 2X22X,4, 

F 4 = x ,  x42 - -  x 2 2 x s ,  

F 5 = XlX4X5 - -  3X20C3X 5 -~- 222X42, 

F 6 = XlX52 -}- 2Z2Z4X s - -  9X32X5 -~ 6XSX42, 
F~ ~- x 2 x 5 2 -  3xaxax 5 -}- 2x4 3. 

Diese 7 Functione- s~dmmen im wesenfaieAen ttbereia mi~ den Coef- 
ficienieaz der Covariante 6 te~ Ordnung und 3 u~ Grades yon r mzd 
kieraus l~st  sich dutch ein invaxianfentheoref/sches Schlussveffahren 
z~igen, dass jede andere homogene Function yon der verlang~en Eigen- 
schaft in die Gestmlt 

.42 G + A~i% + . . .  + .4~G 
gebracht werden kann, wo ~ ,  A2~. . . ,  A T wiederum l~omogene Func- 
tionen sind. 

Von aUgemeinerer Natur und iiberdies yon principieller Bedeutung 
far die spKterhin fotgenden Untersuchungen ist der fo]gende Satz: 

Sired F j ,  I ' 2 , . . . ,  r~(~) gegebene Eormen der n Ver~n~t ichen  

x , ,  x 2, . . . ,  x . ,  so ad~tir~ stets e;~r~e ena~iche Zahl m(~) vo~ I'ormen- 
syst~.w~en 

x, = x,~, x~ = x~, ..., x~(,)= x.(~)~, 

we~he s ~ m m a ~  die Gleizhung 

ide~isch b e f ~  u ~  du~'ch we~e jedes andere :jener G~,chung 

X=(~) = ,  t ,X .~ ,  h + A= X=6)~ + �9 - -  + A=(~ X=~,) =(=), 
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ausgedriicld werden kann,  wo A1, A 2 , . . . ,  A,~(,) eben/al~ Formen tier 
Veriinderlichen x l ,  x~, . . . ,  x ,  sind. 

Der Bowels dieses Satzes beruht auf un.~eron aUgemehaen En~- 
wickelungen fiber die Endlichkeit der Formen eines beliebigen Systems. 
Es sei X l ,  X 2 , . . .  , X (1 )  irgend ein LSstmgssystem der vorgeleg~n 
Gleichung 

�9 ', x, + ~'~ x~ + . . .  + ~ ( , ) x ( , ) -  o 
und in jedem solehen LSsungssysteme werde insbesondere die lef~te 
Form X~(1) ins Auge gefasst. Auf Grund unserer fr~eren allgemeinen 
S~itze ist es dann mSglich, aus der Gesammtheit dieser Formen Xm(l ) 
eine endliche Zahl /~ yon Formen X(1)1 , X,~a)2, . . . ,  X,~(ib, derart 
auszuwrLhlen~ dass jede andere solche Form in die Gestalt 

gebraeh[ werden kann. Bilden wir nun die Formen 

X ;  = X ,  - -  A ~ ' X , ,  - -  A, 'X,~, . . . . .  A / ,X , t ,  ( t = l , 2 , . . . , m ( ' ) ) ,  

woraus sich insbesondere ffir t ~--m (~) 

X:{I) ~ 0 
ergiebt, so erkennen wit, dass jeder LSsung Xl,  X 2 , . . . ,  X~(1) der 
urspriinglich vorgelegten Gleiehung eine LSsung Xl" , X2', �9 �9 X~(l)_l 
der Gleichung 

entzpricht und es l~sst sieh offenbar auch umgekelu4 jede LSstmg der 
ursprfinglich vorgelegten Gleichung darch Combination aus den 
LSstmgssys'~emen 

x , - -  x~,, x ,  = x ~ , , . . . ,  x ( ~ ) =  x(~), (s-1,2,...,~) 
und aus einem LSsungssystem der eben erhaltenen Gleiehung zusam- 
mensetzen. Die letztere Gleichung enthiilt abet nur  m(1) ~ 1 zu be- 
stimmende Formen und wenn folglich der oben ausgesprochene Satz 
fftr eine solche Gleichung als rich~ig angenommen wird, so ist derselbe 
auch fiir die vorgelegte Gleiehung bewiesen. Nun gilt nnaer Satz Fur 
m(1) ~--1~ da die diesem Falle entsprechende Gleichung 

F1X1 ~ - 0  

offenbar gar keine LSsung besitzt und damit ist der Beweis aUgemein 
erbracht. 

Als Beispiel diene die Gleichung 

(~,~, - x~) x ,  + (x~x~ - x,~,) x~ + ( ~ . -  ~ ,~)x~--o.  
wo al, Coef~ienten die n ~ l i c h e ,  3 q u a d r a ~ e n  Formen auftrete~ 
a~f welche wit oben beiBehandlung der cobisr.hen Raumcurve gefiih~ 
wurden. Wit erkepnen lei~ch~, dass aus den.. ~iden LSsun.gssys~emea. 
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X~ - -  x3, X2 ---- x2, X3 =- x , ,  

x~=x,, x~=x., x~=~ 
sic}, jedes andere LSsungssystem jener Gleichung zusammensetzen l~sst. 
Denn bezeichnet X 1, X~, X a irgend ein LSsungssys~m, so kann man 
zun~chst mit Hiilfe des ersteren der beiden LSsungssysteme alle die- 
jenigen Glieder in der Form X~ wegschaifen, welche x 3 als Factor 
enthalten und hierauf lassen sich mit Hiilfe des zweiten LSsungssystems 
alle mit x 4 multiplicirten Glieder in X 1 beseitigen, sodass in dem nun 
entstandenen LSsungssysteme X ( ,  X2" , Xs" die Form X 1' yon x, und 
x 4 unabh~ngig ist~ Setzen wir jetzt in der identisch erfiillten Relation 

(x,x~ - x~)x,' + (~2x~ - x,x,)X~" + (x~x, - x?)X~'= o 
x, ~- 0 and x 4 ~ 0 ein, so ergieb~ sich X l' ~-- 0 und hieraus fol~ 
dann 

x,' = ~(x ,x , -x~) ,  x~ '=  A(x,x,--x~x~), 
we A eine beliebige Form der Ver'~nderlichen xt, ~ ,  x 3, x 4 bedeufiet. 
Aueh da~ so erhaltene LSsungssystem is~ eine Combination jener beiden 
vorhin angegebenen LSsungssysteme, wie man erkennt, wenn man das 
erstere LSsungssys[em mit Ax4, das zweite mit ~ A x  a multiplicirt 
und daan die entsprechenden Formen addirt. 

Als zweites Beispiel wr~hlen wir die Gleichung 

~, X, + F, X, + .. . + F~ X~=O, 

we 2'1, / g 2 , - ' . ,  2'8 die oben angegebenen 6 quadratisehen Formen 
der 5 Ver~derlichen x~, x2, x3, x4, x 5 bedeuten. Man erh~lt die 
folgenden 8 LSsungen 

X,-x~, x~=-x~ ,  x 3 - - x , ,  x , =  x,, x ~ = o ,  x~= o,  
x l - x , ,  x~---x3,  x , - - x 2 ,  x , =  x2, x ~ = o ,  x ~ -  o, 
x,--xs, x , - -  o ,  x~=-x3 ,  x , =  o,  ~ = x ~ ,  x~= o,  
x , = o ,  z , =  x,, x , - -  o ,  x , = - x ~ ,  x~--x,, x ~ -  o ,  
x , - -o ,  x~= x,, x ,=-z3 ,  x , =  o, x~=o,  x~= x,, 
x , = o ,  x~ =  x~, x , = - - x , ,  x , =  o ,  x~----o, x~= x,, 
x , = o ,  x~=- o ,  x~=- x,, x , = - x , ,  xs=--x~, 
x , = o ,  x,=. o, x ,= x~, x , . = - ~ ,  x~=-~,, 

X-6---~ ~x2 ,  
X ~ = - - x 3 ,  

and man zeig% dann in derselben Weise wie in erst~rem Beispiele, 
dass jede andere LSstmg durch ~ombiaation ,us diesen erhalten wet- 
den k~an. 

Wit  lmben vorhin die Endtiehkdl des vollen Systems yon LSsungen 
ffir den Fall bewiesea, dass es sich am eine einzige Gleiclmng handelt. 
Aber die 'dort  henutzte Sehlussweise t i b e r t r ~  sich unmi(~elbar auf 
den~FaU~ m welchem mehrere Gleiehungen yon der i~ Retie st~henden 
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Art gleiehzeitig zu befriedigen shad. Wir sprechen daher den all- 
gemeineren Satz aus: 

Wenn ein System yon m Gleichungen 

~ x, + F,~ X~ + . . .  + ~',,,,(~) X,o) = 0 ( t=  1,~,...,m) 
vorgelegt ist, in welchem die Coefficienten F , , ,  F,,~, . . ., F,m(, i gegebene 

Formen yon n Vertinderlichen und XI ,  X 2 , . . . ,  X o )  m (~) zu bestimmende 

Formen sind, so besitzt dasselbe stets eine endliche Zahl m (~) yon Lgsungs- 
systemen 

xl = x , , ,  x~ = x ~ , , . . . ,  x ( , ) =  x ( , ) ,  (s-l,2,...,m(~)) 

derart, dass jedes andere L6sungssystem in die Gestalt 

X ~ = A ~ X , I +  A2X~ + . . .  + A~(~) X~m(~) (t=L2,...,m(')) 

gebracht werden k.ann, wo A~, A ~ , . . . ,  A~(~) ebenfalls Formen der 
n Ver~inderlichen sind*). 

II. 

Die Endlichkeit der Formen ]nit ~ g e n  Coefficienten. 

Die s'~mmtlichen bisher abgeleiteten S~-tze beruhen wesent]ich auf 
dem Theoreme I des vorigen Abschnittes. W~hrend wir dort die in 
den Formen auftretenden Coefficienten als Zahlen eines beliebigen 
Eationalit~tsbereiehes annahmen, so wollen wir nunmehr den Fall in 
Betracht ziehen, dass dieselben durchweg g~nze Zahlen sin& Dem- 
entspreehend l~sst sich jenem Theoreme I eine weitergreifende Fassung 
geben, welche dasselbe auch fiir Anwendungen auf zahlentheoretische 
Untersuchungen geeignet macht und, wie folgt, lautet: 

T h e o r e m II. Ist irgend eine nicht abbrechende Reihe yon t~ormen 
F t ,  F.,., F a , . . .  mit g a n z z a h l i g e n  Coeffwienten und yon beliebiger~ 
Ordnungen in den n homogenen Veriinderlichen xj ,  x2, . . . ,  x .  vorgelegt, 
so giebt es stets eine Zahl m yon der Art ,  dass eine jede Form 'jener 
Beihe sich in die Gestalt 

F - -  A,F, + A~F: + . . .  + a ~  
bringen liisst, wo A t ,  A2, . . . ,  A~ g a n z z a h l i g e  Formen tier ntim- 
Zichen n Veranderlichen sind. 

Wie man sieht, wird bier im Untersehiede zu der friiheren Fassang 
des Theorems verlangt, dass in gleieher Weise wie die gegebenelx 
Formen ~v'1, F2, ~'3,- -- auch die bei der Darstellung zu verwendeno 
den Formen A1, A2, . . . ,  Am Formen mit g a n z z a h l i g e n  Coe~ciea- 
ten sin& 

*) l)ieser Satz iat ffir e ine  nieht homogene Ver~ndediehe yon I,. K r o n e e k ~ z  
in seinem Beweise fdr die Endlichkeit des Systeum der ganzen algebra~he-  
GrSsseu ehaer Gattuug zux Ge~tung gebracht; vgL Crelle's J. B& 9~, S. 18. 
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Die zum Beweise des Theorems I angewaudte Schlussweise reieht 
zum Beweise des Theorems I[ nicht mehr aus. Denn das frfihere 
Verfahren beruht darauf, das~ wir die Grade der Formen ~2, F 3 , . - -  
in Bezug auf die eine Veffmderliche x~ dutch geeignete Combination 
mit der Form F 1 unter die Ordnung r yon/~'i herabdrtick~en. Sollen 
hierbei keine gebrochenen Zahlen eingeffihr~ werden, so muss der 
Coefficient yon ~f~ in F 1 no~hwendig gleich der positiven oder negativen 
Einheit sein, was im Allgemeinen nicht der Fall ist und auch durch 
lineare ganzzahlige Transformationen der Ver'~uderlichen nich~ immer 
erreicht werden kann. Es bedaff daher zum Beweise des Theorems II 
einer neuen Schlussweise und durch diese gewinnen wir offenbar 
zugleich fur Theorem I einen zweiten Beweis. 

Wir bezeichnen allgemein mit f~ die yon der Ver~nderlichen 
x~ freien Glieder der Form ~ ;  sind dann aUe Formen der unend- 
lichen Reihe f,, f2, f3, - -- identisch Null, so setzen wir 

~,(1) = Fs, (s-~ 1 , 2 , 3 , . . . )  

im anderen Falle sei fm die erste yon Null verschiedene Form der 
Reihe fi ,  f2~ f 3 , - - - ,  ferner ffl die erste Form derselben I~eihe~ welche 
nicht einem Producte yon der Gestalt aa fm gleich ist, worin am eine 
ganzzahlige Form tier Veriinderlichen xl~ x 2 , . . . ,  x~-i bedeutet i fr sei 
die ers~ Form jener Reihe, welche sich nicht in die Gesalt am fro -I- aflf~ 
hringen l~sst~ wo am und bfl wiederum ganzzahlige Formen vo~ 
x I ~ x 2~ . �9  ~ x~-i sind und in dieser Weise fahren wir fort. WRre nun 
unser Theorem II fiir den Fall yon n ~ 1 homogenen Ver~anderlichen 
bereits bewiesen und beachten wir~ dass in der gewonnenen Formen- 
reihe fro, f/~, f~,~-.. ]~eine Form dutch lineare Combination aus den 
vorhergehenden Formen erhalten werden kann~ so fo l~ ,  dass diese 
Formenreihe nofllwendig im Endlichen abbrechen muss. Es sei dem- 
gemi4ss ~ die le~te Form dieser Reihe, so dass stets 

f ~  a~,f~ -{- a~,f~-{-...-{- a~,fz-- l,(fm, f~, ...,f~), (s~1,2,3,...) 
gesetz~ werden kann~ wo ar a f l ,~ . . . ,  a~ ganzzahlige Formen yon 
xl~ x~  . . . ,  x~-I sin& Bilden wit nun die Ausdrficke 

so si~d dies Formen der n Ver~nderlichen x~ ~ x ~ , . . . ,  x~, yon denen 
jede die Ver~mderliche x~ als Factor enth~lt. Wir bezeichnen all- 
gemein mit~ x~ f~a) diejenigen Glieder der Form ~(~), welche lediglich 
mit der ersten Pot~nz yon x~ muI~plich4 sind und betraeh~en die 
Formea f~)~ f~a), fa(~),. . ,  der n -  1 Ver~nderlichen x~, x~ , . . .~x ._~ .  
Verschw;mden diese Formen s~mmfli6h ~ so seCzen wir 

.F~(s)~--. ~ ' ) ,  ( s=1 ,2 ,3 , . . . ) .  
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Ist dagegen jede Form der Reihe ~(~), f~O)f~(~)~.., eine lineare Com- 
bination der Formen f~, f~,..., f~ wie fol~ 

---,, , ,~<-r- - r ' ~ , a = , ,  ( f , , , f ~ , . . . , f D ,  ( s=1,2 ,3 , . . . )  

so setzen wir 

~.(~= ~ 2  ) - ~'> (x .~: ,  x : ~ , . . . ,  ~-~D- 

In jedem anderen Falle sei f~((~) die ers~e nicht dutch lineare Combi- 

nation aus f<~, f/s, . . . ,  f~ hervorgehende Form der Reihe fi(1), f2(!), fa(1), .... , 
ferner sei f~(1) die erste Form dieser Reihe, welche keiner linearen 
Combination der Formen f~, ffl, ., 1~, r(i) gleich ist und en~sprechend �9 " # a ( ~ )  

f ( , )  t ( , )  ~(,) (~) die ers~e nichl durch lineare Combination~ yon f,,, f t , ' "  ",fi ,  ~x~), s~(~l 
horvorgehende Form tier niimlichen Reihe. Die so enf~f~hende Formen- 

reihe f : ,  f / s , . . . ,  f~, ~(~) ~(~) +(~) /~a), 1~(~), ~.o), - - - brich~ unter der vorhin ge- 

machien Annahme nothwendig im Endlichen ab, und wenn f~l~ die 
letzte Form der Reihe bezeichne~, so finden wit stets 

~,(') ~') (f,,, f~, ., rz,-<(') f~!), ,=(')% (s.~__1,2,3~. .) 
wo ~z) eine ]ineare homogene Function jener Formen bedeutef~ deren Coefll- 
cienten selber ganzzahlige Formen der n ~ l  Ver~nderlichen x 1 ~ xi~ ...~ x~-i 
sind. Se~zen wit daher 

so besitzen die so enCs~ehenden Formen ~{.~) der ~ Veri~nderlichen 
xl,  x2~. . .~  x~ s~mmts den Factor x~ ~. Wi t  bezeichnen demgemiiss 
allgemein mi~ ~ f(~) diejenigen Glieder der Form ~',(~)~ welche lediglich 
m i i d e r  zweiten Potenz der Ver~nderlichen x~ multiplicirt.sind und 
betrachten die Formen fl(s)~ f2 (~l, f3(s) , . . ,  der t~- -  1 Ver~nderlichen 
xl x 2 , . . . ,  ~ - z .  Sind diese Formen nicht ~mmflich Null oder lineare 

Co b -atio .en <l r For,',,e, fo, f , ,  f(2'), ", so 
zeichne f~s )) die erste nicht in dieser Weise dutch lineare Combination 
entste-hende Form jener Reihe; desgteichen sei f~ )  die erste nicht 

dutch f:<, f~ ,  . . ., f~, f ~ , ,  f~)~), ... ,, f~l)), f(j(t) linear da~teUbare Form 
in derselben Reihe. Das in dieser Weise eingeleir Verfahren mllss 
wiederum nach einer endlichen A n z ~ l  yon Wiederhohr~gen abbrechen~ 
vorausgesetz~ dims unser Theorem I[ ffir den Fall yon ~ - ~  1 Ver- 
~nderlichen richtig ist. Bezeichne~ demgemii.ss f ~  die letzte dm~h 
jenes Verfahren ~ch ergebende Form~ so wird s~ei~ 
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wo ~(~) eine tineare homogene Funct~ion hedeute~, deren Coefficienten 
selber ganzza'hlige Formen yon x 1, x 2 , . . . ,  X~-s sind. Setzen wir daher 

/Ts(s) ~ F~ (~)~ ~(~) (z~ ~ X~F~ ~ ~.. .~X~FI~'~(1)~ ~(1),.--~ l(1)~ 

z~(2) ., Fz(~)), ( s=1,2 ,3 , . . . ) ,  

so besi~en die so entstehenden Formen ~(~) s~mmtlich den Factor 
3 x, .  Wir bezeichnen wiederum allgemein mit x~ f(a)diejenigen Glieder 

der Form F~ (s), welche mit keiner hBheren aIs der driven Potenz 
yon x~ multiplicir~ sind und gelangen so zu einer Formenreihe 
fl(~) f~(3)~ f~ ( s ) , . . . ,  welche in en~prechender Weise einer weiteren 
Behandlung zu unterwerfen ist. Es is~ klar, wie die for~gesetzte 
Wiederholung des angegehenen Verfuhrens zu der folgenden Formen- 
reihe ffihr~ 

(~) ~ I f l ( ~ ) ~  �9 " " ,  ] ~ ( ~ ) ~  ] , ~ ( ~ ) ~  i f l [ r  " . "~ /~(~)~ �9 �9 "~ . �9 �9 

w o  :~,  v ,  . . .  gewisse ganze positive Zahlen bedeuten und keine der auf- 
tretenden Formen einer linearen Combination der vorhergehenden 
Formen gleieh is~. In Folge des letzteren Umstandes muss auch jene 
Reihe im Endlichen abbrechen, vorausgesetzt, dass unser Theorem II 
fiir den Fall yon n -  1 Ver~inderlichen richr ist. Wir bezeichnen 

die letzte Form jener Reihe mit ~(~) /z(~,) und zeigen nun~ dass jede Form 

in der ursprfinglich vorgelegten Formenreihe F1, F~, F~, . . .  einer 
linearen Combination der Formen 

(~). (~) ~ (r ~ (~) ~ (~) ~-~ (~) (8) ~ ( n , , / ~ ) ,  . .  . ,  ~(~),~( ~ /~(r)a(~, ~'~2~ ~ ( ' ) ' - . - , ~  ~(r), ""," a(~)' ~ ~ ) '  " " ,  ~ ~(~ 

gleich wird. Ist n~mlich ~'~ irgend eine Form der urspriinglich vor- 
geleg~en Formenreihe and r die Ordnung dieser Form in Bezug auf 
die Ver~nderlichen xt~ x ~ , . . . ~  x~, so be~rach~en wir die Gleichungen 

wo l,('), 1,(~-~), . . . ,  l, lineare Combinationen der eben vorhin an- 
gegebenen Formen (8) sind. Da ferner die Form F~(~+~) eine homogene 
Func4ion yon der Ordnung r is~ und in Folge ihrer Bildungswe~se 
dureh ~x~l-~ theilbar L~, so is~ sie no~wendig iden~isch gleieh Null 
and aus den obigen Gleichungen folg~, dass aueh F ,  eine lineare Com- 
bfiaa~on der vorhin angegebenen Formen (8) ist. Diese Formen (8) 
ihrersei~ sinr nun aus den Fomen 

�9 : . . ,  . ,  

dure~  tineare Combina~on ent..~a.~den und es ~s~ daher offenbar 
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m ~ 2~(~) eine Zahl yon der Beschaffenheit, wie sie unser Theorem II 
verlangk Das Theorem II ist mithin fiir n u bewiesen, 
unter der Voraussetzung, dass dasselbe fiir n -  1 Ver-~nderliche gilt~ 

Es bedarf jetzt noch des Nachweises, dass das Theorem II far 
Formen ohne Ver~inderliche d.. h. fiir eine nicht abbrechende Reihe 
yon g a n z e n  Zahlen cl, c2, c a , . . ,  gilt. Um diesen Nachweis zu 
ffihren, nehmen wir an, es set c~ die erste yon Null verschiedene Zahl 
der Reihe; es sei ferner c~, die n~chste Zahl der Reihe, welche nicht 
(lurch c~ theilbar ist. Wir bestimmen dann den grSssfen geme!nsamen 
Theiler c~t,, der beiden Zahlen c~ und c~,; derselbe ist jedenfalls kleiner 
als der absolute Werth yon c~. Wenn es nun noch eine Zahl cu, in 
jener Reihe giebt, welche nicht durch c~,  theilbar is~, so bestimmen 
wir den grSssten gemeinsamen TheiIer c~,t,,, der beiden Zahlen c~,- 
und c~- und es ist dann c~t,,w, kleiner als c~t,'. Auf diese Weise 
ergiebt sich die Zahlenreihe c~, c~, ,  c ~ , . - ~ . . . ~  in welcher jede Zahl 
kleiner ist als die vorhergehende. Eine solche Reihe brich~ no~hwendig 
im Endlichen ab und es set e~...~(~.) die letz~e Zahl jener Reihe. 

Diese Zahl ist der grSsste gemeinsame Theiler der Zahlen c ,  c ,,...,(~,~) 

und es lassen sich daher ganze posi'tive oder negative Zahlen a, a', . . . ,  a {~) 
derart finden, dass 

a% + a'%. + - - -  + 
wird. Da andererseits jede Zahl der urspriinglich vorgelegten-Reihe 
cl, c~, c s , . . ,  ein Vielfaches der Zahl c~,...t,(~ ) ist, so wird m-~-/t(~) 

eine Zahl yon der Beschaffenheit, wie sie unser Theorem H verlang~. 
Aus dem eben bewiesenen Theoreme lassen sich ohne Schwierig- 

kei~ alle diejenigen S~itze entwickeln, welche den in dem erst~n Ab- 
schnitte aus Theorem I abgelei~eted S~tzen entspreehen. Wir wollen 
jedoch in dieser Richtung die Untersuchung nicht for~fiihren, sondern 
uns im Folgenden lediglich atff die Behandlung solcher Fragea be- 
schr~inken, welche in den Wirkungskreis des Theorems I fallen. 

III. 

Die Gleichungen zwisohen doa Formen boliobigor Formonsystome. 

Wir kn~pfen an die En~wickelungen in Abschni~ I an und denkea 
uns demgemgss im weiteren Yertaufe der Untersuchung die Coefficieuten 
der in Be~rach~ kommenden Formen nich~ speciell als gauze Zahlen~ 
sondern als irgend welche Zahlen einas betiebigen Ra~ionalitg~sbe- 
retches. 

Ist: der Modul (~'~, ~ , . . . ,  .F~{l}) wozgele~o~, so erhalten wit al]e 

tibrigen Formen dieses Medals d. h. atle nach demselbe~ tier Null 
congruenten Formen, wenn wir den Ausdruck 

Mathomatisehe Annalen. ~ I .  
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bilden und die Ordnungen der Formen A1, A2, . . . ,  A,~,r so w~ihlen, 
class die Producte A s .FI, A 2 E 2 , . . . ,  A~,#)~(1)  s~immtlich yon der 
n ~ l i c h e n  Ordnung in den Ver~ndertichen sind und ihre Summe folglich 
eine homogene Function darstellt. Es werden uun zwei v e r s c hi e d e n e 
Formensysteme At,  A2, . . . ,  Am(1 ) und ;B1, JB2, . . . ,  B~a ) die n i m -  
t i c h e  Form des Moduls liefera~ wenn 

oder 

(A~--B~)~'~ + (A~--B~)~: + . . .  + (A~(~)--~(1))F~(~)---0 

wird d. h.- wir erhalf.en aus dem Formensysteme A1, me, . . . ,  Amo ) 

alle fibrigen zu der ~ml ichen  Form des Moduls ffihrenden Systeme 
B1, ~ , -  -- ,  3Bma) mittelst der Formeln 

~,  = A, + X,, B~ = A~ + X~, . . . ,  ~ ( ~ ) =  A(~) + X~o~, 

wo Xl ,  X 2 , . . . ,  X,,o) irgend eia L5sungssystem der Gleichung 

(9) P, x~ + ~ x2 + . . -  + ~'~(i)x(~)= o 

bedeuget. Um daher eine griindlichere Einsicht in die Structur des 
vorgeleg~en Moduls zu erhalten, ist eine Untersuchung der letzteren 
Gleichung no~wendig,  wo dann/71, F ~ , . . . ~  ~"~(i) als die gegebenen 

Coefficienten and X1 ,  X ~ , . . . ,  X,,(1) als die gesuchten Formen zu 
beh:ach~ea sin& Nach den Entwicklungen in Abschnitt I besitz~ eine 
sotche Gleichung eine endliche Zahl m ('2) yon L5stmgssystemea 

X , - - ~  ~(~), X 2 = F~(~), . . ., X (~, = F(i{)~ ( s =  1,2, . . . ,m(~)) 

derarr dazs jedes a~dere LSstmgssystem sich in die Gestalt 

(10) X,---:-- A~ ~) lFt~) + A~ ~) .F,~) + . . . + A~)Ft(~X~, ( t =  1,2,. . .  too)) 

~(1) Formen der nSznlichen Yer- bringen l~s t ,  wo A~ l) , A~ 1), . . .~ .o.m(~ ) 

~mderliehen x l ,  x~, . . . ,  x~ sin& Unter diesen m(~) LSsungssystemen 
m'Sge iibe~dies keines vorhanden sein, welches aus den iibrigen dutch 
Iineare Combination erhaI~en werden kann. Verindern wit nun in den 

, . . ,  A~(~), so gelangen wit daAurch 

nicht immer no~hwemdig zu einem a n d e r e n  LSsungssystem der Glei- 
chung (9)~ es werden vielmehr zwei verschiedene .Formensysteme 
A~ 1), A~', . . . ,  A2~ , and i~7} , ~B~l) , . . . ,  3B2~ ) dana das n i i m l i c h e  

L~sungssystem X,~ X :2 , . . . ,  X,, liefern, wean 
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A~ ')-y( ')+,,  --3A(')F<')+- ,~ . . . +  ~,,,(2)-,~(~>= ,.o - - "  �9 + ~,,,(~) ,~(-) 

(t =- 1, 2 , . . . , r a m )  

oder 

- -  - t 2  + ' "  " +  (a  , ( ~ ) -  ,,,(2)] t . , ( ~ )  "= 

( t =  1,2,...,ram) 

wird und auf diese Weise werden wir auf die Untersuchung des Glei- 
chungsystems 

(11) .F~I~ ) X'O)-{ - F~'  2) X(1)-[ - "t- FO) --0)  too)) " ' "  ,~m(2) 0 ( t = l , 2 ,  . ,  --I . t in (2)  ~ " " 

F(1) F(1) . ~ (~)  die gegebenen Coefficienten und gefiihrt, wo _ t l ,  - t ~ ,  �9 ", 

X(1) X~I) X (1) die zu best immenden Formen sind. Das erhaltene 
I ~ ~ " " " ~  m ( ~ )  

Gleichungssystem (11) heisse das aus (9) , , abge l e i t e t e  G l e i c h u n g s -  
sys tem".  

Es sei hier besonders hervorgehoben, dass bei der Bildung des 
abgeleiteten Gleiehungssystems ein d e r a r~ig e s roUes Formensystem zu 
Grunde gelegt wird, in welchem keine LSsung dureh lineare Combi- 
nation der fibrigen LSsungen erhalten werden kann. Die Zahl und 
die Ordnungen der LSsungen eines solehen LSsungssystems sind, wie 
man leicht erkennt, vollkommen bestimmte und auch die in den 
LSsungen auftretenden Formen sind im wesentlichen bestimmte, insofern 
jedes andere Lbsungssystem yon der niim]ichen Beschaffenheit dadurch 
entsteht, dass man die LSsungen des auf~nglichen Systems mit anderen 
darin vorkommenden LSsungen yon gleichen oder niederen Ordnungen 
linear combinirt. Zufolge dieses Umstandes ist auch das abgeleitete 
Gleichun~system dutch das urspr~ngliche Gleichungssystem in ent- 
sprechendem Sinne ein bestimmtes. 

Die Coefficienten des abgeleiteten Gleichungssystems bestehen, 
wie man sieht, aus den Formen der LSsungssysteme der ursprfing- 
lichen Gleichung und wit erhalten sami~ die zwischen den LSsungen 
der ursprfinglichen Gleichung (9) bestehenden Relationen dutch 
Aufstellung der LSsungen des abgeleiteten Gleichungssystems (11). 
Wir bestimmen demgem~ss ffir das letztere das volle System yon 
LSsungen 

- -  ( s - -  ] ,  , �9 . a . , ~ , ( ~ )  a " 

derar~, dass keine dieser LSsungen dutch lineare Combination der 
5brigen erhalten werden kann und fiberd/es jedes andere LSsungs- 
system die Gestalt 

32* 
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-IA + .y + . . .  + 
~-- -  .a. (~) .e" t ~,(3 ) 

annimmt, wo A~ ~), ~ ) ,  . . . ,  A (~).,(~) irgend welche Formen sind. Der 
]etztere Ansa{z fiihrt auf das Gleichungssystem 

~,(~) :~(~) + . . .  + $,(31 ~ , ( ~ )  ( t=l ,2 , . . . ,m(~))  

wo .F,~ ) .Ft~) ~(~) die gegebenen Coefficienten und X~ e}, X~ 2) , . - - ~  -L' t ~ ( s )  ~- . .~  

X~3) die zu bestimmenden Formen sind. Dieses dritte Gleiehungssystem 
(12) ist aus dem zweiten Gleichungssysteme ( l l )  in der niimliGhen 
Weise abgeleitet, wie das zweite Gleichungssystem aus der urspr'ting- 
lichen Gleichung (9). Durch Fortsetzung des eben eingeschlagenen 
Verfahrens erhalten wir eine Kette yon abgeleiteten Gleichungssystemen~ 
in welcher stets die Zahl der zu bestimmenden Formen irgend eines 
GleiGhungssystemes iibereinstimmt mi~ der Zahl der GleiGhungen des 
darauf folgenden Gleichungssystems. 

Zur einheiflicheren DarstelIung der weiteren Untersuchungen ist 
es nSthig, an Stelle der e inen  urspriinglichen Gleichung (9) ein be- 
liebiges Gleichungssys~m yon tier Gestal*~ 

(13) (t=l,e,...,m) 

zu setzen. Die Anwendung des oben angegebenen Verfahrens gestaltet 
sigh dann zu einer allgemeinen Theorie solcher Gleichungssysteme, deren 
Kern in dem folgenden Satze liege: 

T h e o r e m  III. Ist ein Gleichungssystem yon der GestaZt (13) vor- 
gelegt, so fiihrt die Aufstellung der l~etationen zwischen den L6sungen 
desselben ~u einem ~weiten Gleichungssysteme yon der n~mliehen Geaalt; 
aus diesem zweiten abgele~ten Gleichungssysteme entsFringt in gleicher 
Weise ein drittes abgeleitetes G!eichungssystem. Das so begonnene Ver- 

fahren erreicht bei weiterer Fortsetzung stets ein E n d e  .~nd zwar ist 
spiite~ens das n t~ Gleiehungssystem jener Kette ein solches, welches keine 
L6sung mehr besitzt. 

Der Beweis dieses Theoremw ist nicht mfihelos; er ergiebt sigh aus 
den folgenden Schliissen. 

Under den Gleichungen des vorgelegten Systems kSnn~en einige 
eine Folge dear iibrigen sein, indem sie yon jedem Formensysteme be- 
friedig~ werden, welches diesen le~teren Gleichungen genfig%. Nehmen 
wir an r class solche Gleichungen berei~s ausgeschaltet sind, so is~, 
wenn fiberhaup~ LSsungen vorhanden sein sollen, nothwendig, die 
Zahl m dev Gleiclmngen des Systems (13) k!einer als die Zahl too) 
tier ~ bestimmenden Formen und ausserdem sind die m-reihigen 
Determinanten 
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(14) 

Fli, Fx~ �9 . -  FI~,,, 
Di~... ~ ~ . . . .  

wo il, iz, . . . ,  i,, irgend m yon den Zahlen 1, 2 , . . . ,  too) bedeuten, 
nicht s~immtlich gleieh Null�9 Es sei etwa D ~ Dx~...,, eine nicht 
verschwindende Form yon der Ordnung r und zwar m5ge diese Deter- 
minante/)  so ausgewii~lt sein, dass die Ordnungen der fibrigen Deter- 
minanten in den Veriinderlichen xt, x2, . . . ,  x, nicht grSsser als r 
sind. Wir denken uns ausserdem eine derartige homogene lineare 
Substitution der Ver~inderlichen xi, x2, �9  x, ausgeffihrt, dass dadurch 
der Coefficient yon ~ in D einen yon Null verschiedenen Werth erh~tt. 
Das Gleichangssystem (13) besitzt offenbar forgende LSsungen 

X~----/),,+x,~,...,,,,,..., X,,,-~.D~,,.,...,,,,_~,,,,+~, X,,,+~ = D ,  X,,,+~-~ O, ..., X(~) ~ 0 ,  

Xx = D,~-2~v..,~, ..., X~-~  D~,~,...,,,,_~,,,+~,- X , ~  = 0, X~+2 ~- D, ..., X,,o) -~ O, 

X~---1),(~),~...,,,,..., X~=D~,~,...,m_~.,,(~), X ~ ,  = 0 ,  X,,+~---0, .... , X(~) ~ 1). 

Ist nun eine LSsung Xt, X 2 , . . . ,  X~,(t) des Gleichungssystems (13) 
vorgele~, so l~st  sich dutch Combination mit der ersten LSsung in 
(14) aus jenem LSsungssystem X1, X2, . . . ,  X o) ein anderes ableiten, 
in welchem an Stelle der Form X,,+I eine Form steht, deren Grad in 
Bezug auf die Ver~nderliche x,  kleiner ist, als die Ordnung r yon J) 
angiebt, w~hrend die Formen Xm+~, X,,+~.. .~ X~(1) ungegndert bleiben. 
Die so erhaltene LSsung liisst sich wiederum mit dem zweiten L5sungs- 
system in (14) derart combiniren, dass an Stelle der Form X,,+~ eine 
Form tritt, deren Grad in Bezug auf die Ver~nderliche x, kleiner als 
r i s t  und wit erhalten dutch entsprechende Verwendung der tibrigen 
LSsungen in (14) schliesslich eine LSsung - t ,  = . . . , - -~( i ) ,  .wo die 

Formen _,~_~, :_.~+~,...,-,,(x) in Bezug auf x~ yon einem niederen 
Grade sind als die Zahl r an~ebt. Wit wollen zeigen, dass dann 
auch die Grade der Formen E l , - - 2 , - - . - , - - ~  bezfiglich der Ver~nder- 
lichen x, kleiner sind als r. Zu dem Zwecke multipliciren wir die 
Gleichung 

mit der auf das Element ~t~ bezfiglichen m -  1 reihigen Unterdeter- 
minante yon D und summiren alle auf diese Weise f i i r t =  1,2,...,m 
entstehenden Gleichungen. Wir erhalten so eine Relation yon der 
Gestalt 

D-,--l-Da,~,...,,~_~,...,,,, _=~+~-[- D~,~ ...,,~+~,...,~ -~_~ + Da~...,,,,o),...,,,,~,,i(~) ~-0, 
( s -  1, 2 , . . . ,  



494 Dxw~ H ~ . ~ .  

und da die Ordnungen tier hier vorkommenden Debrminanbn nicht 
grSsser sind als die Ordnung r yon D, so sind in der Tha~ die Grade 
tier Formen -s in Bezug auf x~ s~mmflich kleiner als r. 

Der eben bewiesene Ums~nd reeh~fer~igt den Ansatz 

(15) ~ . ~ - . ~ , x 2 1 +  ~ x ~  -~ + . . .  + ~ ,  (s=l,2,.. . ,mC,)) 

wo ~sl, ~ ,  . . - ,  ~r Formen bedeu~n, welch�9 nur die n ~  1 Ver- 
~nderlichen xl, x2, � 9  x~_l ent`halten. Wenn wit dies�9 m(~) Ausdrficke 
- i ,  ~-2,--.,-re(l) aus (15) beziehungsweise ffir X1,  X ~ , . . . ,  Xm(1 ) in 
die urspdinglichen Gleichungen (13) �9149 linker Hand nach 
Pobnzen yon x~ ordnen und die mit` gleichen Pobnzen yon x~ mul~i- 
plicir~en Ausdrticke einzeln gleich Null se~en, so erhalbn wit eine 
gewisse Anzahl t~ yon Gleichungen zur Bes~immung der m(~)r Formen 
~u, ~12, --- ,  ~o)r" Bezeichnen wir der Kiirze halber die le~zbren 
Formen mi~ ~1, t .o , . . . ,  ~(1), s9 erhalt`en jene ~ Gleichungen die Gestalt` 

(16) ~,1~1 + w~ + ' - "  + ~(~)~(~)= o, ( t~ . l ,~ , . . . ,~)  

we die Coefiieienten ~Pti, ~t~, . . - ,  %~(t) bekannt~ Formen der n ~ 1 
Veriinderlichen x ~ , x : , . . . ,  x~- i  sind. Es sei nun 

~ _(i) (i). _(i) 

ein volles LSstmgssysbm yon (16) und zwar ein solches, in welchem 
keine L5stmg dutch lineare Combination der tibrigen LSsungen erhalten 
werden kann. Aus einer jeden LSsung dieses LSsungssysbms l~st` 
sieh vermSge (15) eine LSsung der ursprtinglichen Gleichungen (13) 
zusammenset`zen. Die so erhaltenen LSsungen der Gleichungen (13) seien 

- ..(~) - ---~ ,~,(1) (s ._~. l ,2 , . . . ,g(~))  

Darch Zusammenfassung der bisher angest`ellbn Ueberlegungen 
gelangen wit zu dem Ergebniss, class eine jede LSsung X~, X ~ , . . . ,  X ~ o  ) 
der urspriinglichen Gleichung (t3) sieh in die Gestalt. 

+ ~(:)~).~+,,,, ,.., + " -  + ~h )_ . ,  ~.,(~),~. ,,., 

A(~)D . --A(~) n -~'--~2 1,2,. . . ,m-l,m+2 - ~ ' ' "  T m(1)_m-t~l,2,...,m_l,m(1), 

X~+~ ammm •  ~ . - -am Cm +A~I)1)+0_{_..._{_0, 

X~n-I- ~(I)~(~) ~ ~(1) ~(I)  __  ~ a (i) ~,,(~) ~ n  ", ~ ( i )  T ~  . - - - 0  
~ = ~ 1  " ~ , m + ~ , l T a ~  n V m . - { - 2 , ~ T " ' T  ,u{~)~'l"m.,r~,,u(:~)TvT'zl~ J-"T-" T 

X _(i)~.(1) -- j#,~0)  ~ "ar (p(~) ~m ~--a~ u';~mI-~ ~,~ " ~ m ~ "  " ' +  ~(~) ~a),(~) + 0 +  0-{- -.. T-' A m~(1)_~n 
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bringen l~ss~, wo a~l), a~(*),..., a ~ Formen der n - - 1  Veriuderlichen 

~i --(i) A% Formen der ~ Ver~nder- xj ,  x ~ , . . . ,  x,~-i und A ), 1, e , . . . )  ~,( )_~ 
lichen x,, x~,...,x~ siud. Iusbesondere miissen daher auch die LSsungen 

X, x~%,, X~ X.(,) x~r (~) 

in obiger Gestal~ darstellbar sein und wir setzen dem enbprechend 

X (b(1) ,f)~(2) (~)(1) .j,_ ~)(2) (~)(1) - - .  (2).~ . (2) 

O(1) ~ ~i)(2) (i)(I) ~ { .i.(2) (~)(I) - -  (2)/) - - .  
Xn m s - -  "1~ --m~ - -  " " " - I -  'Q,@) ~ m~,(8)-i" X,~s ~,~,...,m-~,m+*-P" "" 

I- (~) 
~mO ) - -  m, s "D l ,  o., . . . , m - L  ,,,O ) ~ 

x (t) O) ~,(~)(b(') ~.(~) ~(~) -(~) ,,,+~,~ = ~-~+~,~ + ' " +  %(~)~ ~+~,.(~) + z .  D + O + . . . + O ,  

x oh(I) ~ ~/,(~)(p(~) ~,(~) (p(i) . (~) ~.~,+~, _ ~,~ .,+~,, + . . .+~(~)~ .,+~,~(~)+0 + ~ D+...+O, 

x~r =~,~,v,,,(:):-"(~)'(i) + '"T%(~)~ ~(,)~(~)+O+O+-..+,,(,)_~.~,,D, 

(s --- 1, 2 , . . . , / , (~) )  

wo die Formen ~**,~,(~),...~ ~pm)~(~), und in Folge dessen auch die Formen 

;~(~) - (~)  Formen sind~ welche nur die n -- 1 Verllnderlicheu 
l s  ~ " " "~ ~ m  ( 1 ) - r a , s  

x~, x ~ , . . . ,  x~_~ enihalten. 
Die L5sungen (14) und (17) bilden zusammengenommen ein volles 

LSsungssystem der urspriinglich vorgelegten Gleichung (13) und die 
Aufstellung der zwischen diesen LSsungen bestehenden Eelationen fiihr~ 
zu einem Gleichungssystem yon der folgenden Gestal~ 

"W-~(1) (~) Y(~) + ' "  + D,,(,b,....~ *,,,m- -~- O~ =,.(" 1) + ,., _1 ,,, 

r xl') +-.-+r x Z, + rl') mi ~(~) ~)l,~,...,m-~,m+l + " "  

+ D~,~,...,~_~,.,(,) ym~(1) _ , , ,  =0 ,  
(~)m(*) ~V(*) _L. --(i) ~ ~(i) y(1) +, , t - ,  r "'+%,+~.~( )-'~(~)+ D_~ + 0 + . . . + 0  

~+~.~ + . . . +  + . . ~ + 0  

(i) x~i)  (,) -~,-a) 
�9 aL m ( i ) _  m 

WO Xt (*) X(,) y~,) ~ff)-,1, die za bes,immenden Formen 
,~,r 

~-=0, 

~---0~ 
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Hierbei ist besonders hervorzuheben, dass mSglicherweise einige 
unbr  den LSsangen (14) and (17) gleich linearen Combinationen der 
fibrigen L5sungen sind and in Folge dessen das Gleichungssystem (1.9) 
nicht in dem oben definirten and dutch Theorem III geforderten Sinne 
aus (13) a b g e l e i t e t  worden ist. Um das Gleiehungssystem (19) in 
alas aus (13) a b g e l e i ~ e t e  Gleichungssystem umzuwandeln, bedarf es 
also noch einer Reduction des Gleichangssystems (19), welche in der 
That sp~brhin ausgeftihrt werden wird. 

Das Gleichungssysbm (19) hat, wie aus (18) hervorgeht, die 
LSsungen 

- -  . r l  1 - -  X ~  ~ ~---- ~r21 �9 X (:) _,.(~) , . . ,  ,,,(e) ~q ,~ (~ )  

X(1)__ ~ / , ( 2 )  
I - -  "r 1~8 

X(~) _ _  ~(~) -~  (2) ..(3) 

Xi(2) .,.(3) -~(i)  _,.(2) 

i ~ )  (3) 

y(1)  (2) 
. . . ,  m ( l ) - - m  ~ -  Zm(i)_m,l, 

~ i) (3) 

~(i) .,.(~) :y(2)=___ (~) 

2,.(: ) * . {~} ~. . . ,  m(1)_m~ ~n,~(~)_ ~,~(~) 

Is~ jetzt irgend eine LSsung X m -v-(2) y~l) Ir(~1) ,, I , ' ' "  "~(~)' , , ' "  - 

des Gleichangssystems (19) vorgelegt, so lisst sich aus derselben durch 
Combination mit den LSsangea (20) eine andere LSsung 

herstellen, wo ~:) ~a) Formen sind welche nur die n - -  1 Ver- 
~inderlichen x,,  x 2 , . . . ,  x~_l enthalten. Setzt man diese LSsung 

~(2) . H (:) in die le~zbn m(2)  Gleichungen ~ ' ) , . - . ,  s~(3), H~:),.. , .,(,)_,, - -  

yon (19) ein, so sieht~ man leich~ ein, dass die Formen H~I),..., H(2~:)_,~ 
identisch Null sind und wir erhalten somit zur Bestimmang der Formen 

~ die folgenden Gleichungen 

r ~(11) + O(:)~(1) + + .~(1) e(2) 0. ( t =  1,2,. ,re(l)) 
t I  - - t 2  = ~  " " " ' ~ t g ( 2 )  S~(2) ~- . .  

Die Formen �9 (1) d) (:) ~.0) enthalten die Veriinderliche x~ 
" t l  ~ " t 2 ~  " " -'~ ~ t l ~ ( 3 )  

hSchsbns im Grade r -  1. We_nn wir daher in den-letzteren Glei- 
chungen linker Hand die Coefficienten der Potenzen yon x~ einzeIn 
gleich Null setzen, so ergiebt sich das Gleichungssystem 

(2i) ~,l ~ + + . . .  + = 0 ,  ( t = i , 2 , . . .  

wo sowohl die Coefficienten wie die zu bestimmenden Formen lediglich 
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die n - -  1 Veriinderlichen x 1, x2,. . . ,  x~-i enthalten. Dieses Gleichungs- 
system (21) ist,  wie man sieht, das aus (16) abgeleitete Gleichungs- 
system. Es sei- nun 

~)  ~72, ~(~') -(~) r _(2) ~, ~(~)) ~--- ~--- ~u2~, �9 . . ,  ~ , (2)  ~--" q;~(~)~ (S ~ 1 ,  . . .~ 

ein volles LSsungssystem yon (21) und zwar ein solches, in welchem 
keine LSsung durch lineare Combination der iibrigen LSsungen er- 
halten werden kann. 

Fassen wir die letzteren Entwickelungen zusammen, so erkennen 
wir, dass eine jedo LSsung des Gleichungssystems (19) sich in die 
Gestalt 

~ -  a~2) cP i~) + ' " - -  ~,(a) ~ , (~ )  "T " ~  k ~ z n -  (~) (~) 

aft)_(2) .._L_(2) .~(2) _~(2).,. _{_A(2)(~,=_x,O.{_. . .  ~--- ~2~ -{-" ~ ( ~ ) ~ e ~ ( ~ ) - v , ~  ~=~ 

~(~) ~(2), 

x ( ' )  = ~?)-(~) + . . .  2- A~) _(2) _ ~(~)~.(2) _{_A(2) @(~) ..L... 

-{-A (~) /w, (2) - -x~)  

Y~(~)" = 0 + . . - +  0 _~_ ~(2)..(2) ,1(2) ..(2) 

_~t(~) ,,(~) -{- #(a)~(~) 

Y(~) - -  0 + . . . +  0 m(1)_m 
..~ A(2) . . (2 )  __~(~)~(2) 

1 km(1)_n~, 1T-a2  ~(1)_m ' 2 

A(~) . (2) 
-{- """ ~ -%(~)~,,,(~)_~,,~(2), 

. .  a (~) Formen der n -  1 Ver~inderlichen bringen l~isst~ wo a~), ", ~(s) 

x I x~, ., x~-i und A(~ 2) A (2) Formen der n Ver~inderlichen 

x~  x 2 , . . . ,  x~ sin& Insbesondere mtissen daher auch die LSsungen 

X(~) ~ _(2) ~ ( 1 ) _ _  _(2) y(1) - - x  ,~(2) Y~)~0~... ,  ~,(1) ~ 0  

(s ~ 1 ,  2 , . . . ,  t~(3)) 

in obiger Gestalt darstellbax seia und wit setzen dementsprechend 
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x --(~) ~ ""(~) -(~) ' (~) . (s) . (3) ~t,(s) 

27 .  - -  (~) (~) 

o ~  o + . . . +  o 

o~- o + . . . +  o 

27 Z~2 ~ (3) . _L. - (~) - (~) ~ u  27" " ~ Z ~ ( ~ ) , l ~ # s ) ,  

Z(sl~ Z (~) 27zi~z(~l,_~l +--.27 ~()..,(,_.,.(~), 
(s ---- 1 ,  2 ,  . . . ,  ~(~)), 

w o  die  F o r m e n  ~p(~, ,~,(*) u n d  f o l g l i c h  auch  die  F o r m e n  
�9 " "~ ~'~(3) s 

, ,  . . , ~(s), n u t  die  V e r i i n d e r l i c h e n  x~, x 2, . . . ~  x~_~ e n t h a l W n .  

N ~ c h  (22)  b i l den  die  L S s u n g e n  (20)  z u s a m m e n g e n o m m e n  m i t  den  

L S s u n g e n  

X} ~) -(~ ~'(~) -(~) ~ ( "  -(~) ri~)= 0, Y(" = 0  ~tJ~ l ,~  .zx 2 ~-----tJ~2, ~ . , . ~  " ~ ' - / z ( 2 ) ~ t J # # ( 2 ) s ~  . * ' ~  m ( 1 ) _ m  

(s ~-  1, 2 , . . . ,  #~)) 

e in  vo l les  L S s u n g s s y s b m  y o n  (19)  u n d  die A u f s b l l u n g  der  z w i s c h e n  

d ie sen  L 5 s u n g e n  b e s t e h e n d e n  R e l a t i o n e n  f i ihr~ zu d e m  Gle i ch tmgs -  

s y s t e m  

( ~ )  

�9 - -  (s) ~ ( ~ )  _ 7 . , ( s )  x ~ )  Z }  ~ ) + .  ~ , ~ , ( s )  -(s) X(s)-{ - ' "  q-(P~(~) ~ (s)-r- t ~ n  - -  ~ ( ~ )  ~Yll " " 

_(~) ~v(~)  ~ ,p(~)  ~ )  ~ x~(~)+ �9 . . +  ~.(~).(~)%(~)-~ .(~,~ 

2 7 - (~) o + . . . +  o +zi~ ) y~) + . . .  ~(~) 

21- -(~) 0 + . . .  + 0 + z (s)~(~)_~,~ Y}~) +"" z.,m_.~(~) 

[I7(s) m A (s) - -  v~ 

y}~) + ...  + 6p(~) . \ v(~) - - 0  

Y(~) - - 0  ~(~) ~ . 

wo X~ (*) y(,) yi(2), y(2) die zu bestimmenden Formen " " "' --~(3) ~ " " ":~ /~(~) 

sind. Dieses G!eichungssysbm (24) besitzt, wie aus (23) hervorgeht, 
die LSsungen 

.Xz(:s) ~'a-(3) X Y" ~) ~ "h(8) ~(~) _(3) -T,.(~) (~) 

(~) . . . . . . . . . . . . . . . . . . . . . . .  

.., - - ~  -x~ ,  Y~'~,--z~)~(~, 
O!~a  ), �9 t,(a ) -  ~()~(~) �9 -~-zltAa),...~ 
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Ist jetzt irgend eine LSsung X~(~), ' '  -X(3)#a), Y~(~), - . - ,  ,v~(~)-(~) des 

Gleiehungssystems (24) vorgelegr so liisst sic}, aus derselben durch 
Combination mit den L5sungen (25) eine audere LSsung ~(~) ~(2) ) . . . )  aJ/~(a) 

. .  H (~) ableiten wo ~(3), .(~) sind, welehe nur Hi3), ", ~(3) , . . . ,  ~(~) Formen 

die n - -  1 Veriimderlichen x~) x~ , . . .~  x=_, enf~halten. Se~z~ man ,diese 

~(3) H(~). .  u(3) in die ers~en ta(~) Gleichungen yon LSsung ~ ) , . . . )  ~(~), .~ n(~) 

(24) ein, so sieht man leicht, (lass die Formen H(~ 3) H (~) idenfisch . . . )  #(~) 

u.a Bos immu, g Vormon . . . ,  er),a  on 
daher die Gleiehungen 

.~(3) u(3) _(3) ~ ( ~ )  (26) ~ ) #  + ,~,~ ,3 + . . .  %~) %~> - - - -  o, (s = I ,  2, . . . ,  ~(3)) 

wo sowohl die Coeffieienten, wie die zu besfimmenden Formen lediglich 
die n ~  1 Ver~nderlichen x~, x:, ..., x,_,  enthalten. Dieses Gleiehungs- 
system (26) ist~ wie man sieht, das aus (21) abgeleitete Gleiehungs- 
system�9 

Das volle System yon LSsungen des Gleichungssys~ms (24) l~ss~ 
sich zusammense~en aus deu LSsungen (25) und aus LSsungen yon 
der Gestal~ 

~- X (~) - -  ;:(~) Ir~ (9) 0, Y (3) - -  o X*(~) ~i ~>, " ' ,  . ( , ) - - ~ ( 3 ) ,  = -"  ", - ~ ( ~ ) - - - ,  

wo ~(3) ~:(2) LSsungen des Gleichungssystems (26) sin& 
) "" "' ~.o) 

Denken wit uns (]as eben beschriebene Verfahren for~gese~zt;) so 
erhalten wir die Kette der Gleichungssysteme (13)~ (19)~ ( 2 4 ) , . . .  
und ferner zugleich die daneben ]aufende Ketie der abgeleite~en 
Gleichungssysteme (16), (21))(26) . . . .  Diese beiden Kei~en yon 
Gleichungssystemen stehen zu einander in engster Beziehung, indem 
das volle Sys~m yon LSsungen des ~t~ Gleichungssys~ems in der 
Kette (13), (19), (24)) . . .  sieh zusammensetzen l~isst aus den LSsungen 
yon der Gestalt 

(27) 
�9 ) �9 �9 o �9 * �9 �9 �9 �9 �9 �9 t �9 Q ** �9 ~ w 

X(~-*) 2=) y ( * * - * )  ,j,(~) __ y,(=-*) ___. (=) 

und den LSsungen yon der Gestalt 

x , ( - - , > _  = ), y~a~l) 
Y'I "-*~ ~ O,  . . . ,  - (._~) -~ 0:, 
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wo ~ - ~ , . . . ,  ~ o  LSsungen des u t~' Gleichungssystems in der Kette 

(16), (21), (26), . . .  sind. In dem LSsungssysteme (27) bedeuten 
(~ ., 2: (~} Formen der ~ ~ 1 Ver~nder- vi~,..., e ;~.) ,  z~,.. ~ _ , ~  

lichen x~, x~, . . . ,  x,_~ und zwischen diesen LSsungen (27) ~ir sich 
allei~ besteht, wie man leicht erkennt, keine Relation, d .h .  das 
Gleichungssystem 

o ~ �9 �9 * ~ �9 �9 �9 �9 ~ �9 �9 �9 �9 �9 t �9 �9 

%~) y ~ )  /~,,l~ - x~) y ~  - 0 ,  

(28) z~, ) Y F  ) + . . .  + z ~) r ('*) = o ,  

( ~ _ ~  r F ~ +  - - .  + z! '*) 

besitzt keine LSsung. 
]n den Gleichungssystemen (16), (21), (26), . . .  der zweiten Kette 

handelt es sich lediglich um Formen, welche yon der Ver's 
x~ frei sind. Nehmen wir daher an, das zu beweisende Theorem LII 
set bereits fiir den Fall yon n - -  1 Ver~nderlichen als richtig erkannt, 
so folgl, dass in der Kette (16), (21), ( 2 6 ) , . . .  sp~itestens an n - - 1  ster 
Stelle eta Gleichungssystem auftritt, welches keine LSsung besitzt. 
In Folge dieses Umstandes muss in der Kett~ (13), (19), (24), . . .  
sp~if~stens an n -  1 ster Stelle ein Gleichungssystem auftreten, dessen 
volles LSsun~system durch die LSsungen yon der Gestalt (27) er- 
sch5pft wird; es ist dana das unmittelbar auf dieses folgende Glei- 
chungssystem d. h. sp~itestens alas n t~ Gleichungssystem der Ke~te 
(13), (19), (24), . . .  yon der Gestalt (28) und dieses Gleichungs- 
system lasst seinerseits keine LSsung mehr zu. Wi t  haben somit~ unter 
der Annahme der Richtigkeit des Theorems III ffir n - -  1 Ver~.nderliche, 
gezeig~, class die Kette der Gleichungssysteme (13), (19), ( 2 4 ) , . . .  
sp~testens mit dem n tea Gleichungssysteme abbricht. 

In  der Kette der Gleichungssysteme (13), (19), ( 2 4 ) , . . .  wird 
allgemein das x te Gleichungssystem dadurch erhalten, dass man flit 
das ( ~ -  1) ~te Gleichungssystem in der ~oben beschriebenen Weise ein 
volles System yon LSsungen bildet und dann die unbestimmten Iinearen 
Combinationen dieser LSsungen gleich Null setzt. D~, nun im All- 
gemeinen das bet unserem Veffahren sich ergebende volle LSsungs- 
system ein solches sein wird, in .welchem einige LSsungen lineare 
Combinatdonen der fibrigen sind, so ist das xto Gleichungssystem 
der Kerr. (13), (19), ( 2 4 ) ,  . . .  nicht nothwendig zugleich dasjenige 
Gleichungssystem, welches man ethYlS, wenn man aus dem (~ ~ 1 )  sten 
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Gleichungssysteme in dem yon uns definirten und in Theorem III ge: 
forderten Sinne das u b g e l e i t e ~ e  Gleichungssystem bildet. Abet es 
bietet keine Schwierigkeit aus der gefundenen Kette (13), (19), (24), . . .  
die Kette der aus (13) abgeleiteten Gleichungssys~eme zu gewinnen, 
da wir hierzu offenbax nur n5thig haben, in den Gleichungssystemen 
der Kette (13), (19), ( 2 4 ) , . . .  alle diejenigen Formensysteme za unter- 
driicken oder (lurch lineare Combina~ionen der anderen Formensysteme 
zu ersetzen, welche lediglich durch eben jene tiberfliissigen LSsungen 
bedingt sin& Diese Ueberlegung lehrt zugleich, dass die Zahl der 
Gleichungen und der unbestimmten Formen in den Gleichungssystemen 
jener Kette (13), (19), (24), . . .  jedenfalls nicht vermehrt zu werden 
braucht, damit aus dieser Kette (13), (19), (24), . . .  die K e ~  der 
aus (13) a b g e l e i t e t e n  Gleichungssysteme entstehe und da die Kette 
(13), (19), (24), . . .  den obigen Entwickelungen zufolge spiitestens 
mit dem n ten Gleichungssysteme abbricht, so hat die Kette der aus 
(13) a b g e l e i t e t e n  Gleichungssysteme umsomehr diese Eigenschaft. 
Damit ist unser Theorem III fiir Formen yon n Ver~tnderlichen be- 
wiesen, unter der Voraussetzung, dass dasselbe ftir den Fall yon n - -  1 
Ver~nderlichen gilt. 

Um zu zeigen, dass Theorem HI fiir den Fall n ~ 2 rich~Jg ist, 
nehmen wir an,  es sei ein Gleichungssystem yon der Gestalt 

(29) + + . . . - t -  = o 2 ,  . . . ,  

vorgeleg~, wo ~ t l ,  2 '~,  . . . ,  Ft~,(~ ) bin~re Formen der Veriinderlichen 
xl,  x2 sind and es set ferner 

F X - -  ( s  = 1 ,  2 ,  . . . ,  - ' - -  1 . ~  X 2 ~ 2 ~  �9 . .~ (1) ~ m (1)  a 

ein volle~ LS~ungssystem yon (29) derart, dass keine in demselben 
enthaltene LSsung eine lineare Combination der fibrigen LSsungen 
ist. Das aus (29) abgeleitete Gleichungssystem nimmt da~n die 
Gestal~ an 

(30) ~(~) X~ (')~ -{- ~('),~ X~ ') -{- �9 �9 �9 -{- ~'(')~(~) X (')~(~)-- 0 (t----- 1, 2, . .., m(')) 

und es ist zu zeigen, dass dieses Gleichuugssystem keine LSsung be- 
sitzt. Zu dem Zwecke nehmen wir das Gegen~eil an und verstehen 
under X},), ~r(~),. .- ,  X ('),,,(~) bin~re Formen beziehungsweise yon den 

Ordnungen r~, r~, . . . ,  r(~),  welche jenes Gleichungssystem (30) be 

friedigen. Ueberdies mGgen diese Formen X(~ ~), "~(~) X a) in 

dne  solche Reihenfolge gebrach~ seth, dass 

- -  ~_ (~) 

wird und es set endlich l eine bin~re Linearform, welche niche; in 
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x 1 X1 (1) als Theiler enthalten i s t  Bestimmen wir jetzt die Cons~nten 
c2, c3~...~ c(~) derart;, dass die Formen 

y 2  ) - -  x(, ') + c ,x '? -"  x(d ) (s = 2, 3 , . . . ,  m(~)) 

s~immtlich dutch Z flaeilbar werden und setzen wir dana 

(31) ~o) Ft(~) ~ ~-~ ,~( I )  ~ .~,',-,',~o) 5,,e-)-" F (0 v2 ~x  ~- t 2 - -  C m(.9) X 

(t = 1, 2, . . . ,  too)) 
so ist 

G(1) X(1) ~(1) 1z(I) ~(1) y2) + . . .  + F(1) 17(') 0 .at, t 2  =:== 

(t - -  1 , 2 , . . . ,  m(~)) 

und hieraus folgr dass die Formen G (1)t~ siimmtlich durch l r 
sind. Wir  setzen dementsprechend 

(32) ~_a) ~(1) ~ / - / t l  ~ ( t  1, 2, toO)) ~Ur t  I ~ ~ . . .~ 

Es genfigen nun die Formen 

X 1  ~--- t r n  ~ "~ (1) 1 ~--- "--.~21 :~ " �9 re(l) 

uad demnach auch die Formen 

X1 ~(~) X2 ~ ~(1) X( t )  - -  H 0) . L L l l  ~ -L~t21 ~ * . *~ m ( 1 ) I  

dem ursprfinglieh vorgeleg4en Gleichungssysteme (29), woraus ins- 
besondere folgt, dass aueh die lelztere LSsung dutch lineare Combi- 
nafdon der obigen m(2) LSsungen erhalten werden kann und da die 
Formen //~(~) beziehungsweise yon niederen Ordnungen sind als die 
Formen "1~'(1) .~'~, SO ergeben sich folgende Formeln 

H}~) ~ z,o) 1) (t 1 2, . mO)) =..~2~. t~  + Aa-F(t~ + . . .  + A,,,('2)Ft,~(2), --~ , . . ,  

wo A~, A a , . . ,  A(~) gewisse biniire Formea bedeuten. Aus diesen 
Formela und den Formeln (31) und (32) erhalten wit unmittdbar:  

F ( 0  A ( 1 ) ~ , ( 1 )  A(1)A~-~(z) A (1) F (1) (t ---- 1 2 toO)) 
a ----'~ ~'t~ + ~ ~a + ' ' ' +  ..(~) ~ ( 2 ) ,  , ~ ' " ,  

wo A(~ ), A~ x) A O) gewisse andere biniixe Formen sind d. h. unter 
�9 - .~ m 2 

jenen m(~) LSsungen is~ die ersfe LSsung eine lineare Combination der 
abrigen LSsungen. Dieser Umstand ist mit der vorhin gemachten Fest- 
setzung in Widerspruch und u nsere Annahme, dass das Gleichungs- 
system (30) eine LSsung besifize, ist somi~ als unzul~ssig erkannt  
Damit is~ des Theorem H! fiir bin~re Formen und folglich aueh zu- 
gleich allgemein bewiesen. 

Es wurde bereifa oben dargelegt, inwiefern die Formen eines 
~ollen mad keine fiberfliissigen L~sungen enthaltenden LSsungssystems 



Ueber die Theorie der algebraischen Formen. 503 

durch das gegebene Gleichungssystem festgelegt sin& Offenbar isi in 
entspreehendem Sinne auch die Kette der abgeleiteten Gleichungs- 
systeme eine wesentlich bestimmie. 

Was insbesondere die Untersuchung eines Moduts (F  1 , ~2, - . . ,  ~',-) 
anbetrifft, so legen wit dabei die folgende aus den Formen des Moduls 
zu bildende Gleichung 

als erstes Gleichungssystem zu Grunde und die Aufs~ellung der K e ~ t e  

tier hieraus abgeleiteten Gleichungssysteme gew~hr~ dann, wie sparer 
n~her ausgeffihrt werden wird, einen weitreichenden Einblick in das 
algebraische Gefiige jenes Moduls. 

Zur Erliiuterung unserer allgemeinen Entwickehngen mSgen 
folgende Beispiele dienen. Der bereits oben in Abschnit~ I behandett~ 
aus den 3 quadratischen Formen 

F1 ~ x l  x3 - -  x2 2, 

. E  2 - -  x : x  3 - -  x l  x 4 ,  

2'~ ~ x2x+ ~ x3 +" 

gebildete Modul (F~, ~'.,/P3) ffihrr zu der Gleichung 
P , x ,  + ~ x 2  + G x 3  = o., 

Wie oben bewiesen wurde, l~sst sich eine jede LSsung dieser Gleichung 
in die Gestalt 

X t ~ - x  3 
X2 = x~ 

X3~---X! 

YI + x4 Y2, 
r~ + x3r+, 

briagen, wo YI, Y2 quatern~re Formen sin& Es entsf~ht somit das 
abgeleitete Gleichungssystem 

x~ y~ + ~ y~----- o, 
x~ y, + x3 ~ = o, 
x, Yi + x2Y2 = 0, 

welches seinerseits keine LSsung mehr zul~sst. Die Kette bricht also 
in diesem Falle bereits bei dem 2 t~" Gleiehangssysteme ab. 

A~ zweites Beispiel diene der Modul (Ft ,  ~ - z ~ - - - ~ ' a ) ,  wo 
F~, ~2,--- , /~6 die ebenfalls bereits in Abschnitt I behandelten Formen 
yon der zweiten 0rdnung in den 5 Ver~nderlichen xl, x 2 , . . . ,  xs+ be- 
deafen. Die Gleichung 

die dort angegebenen 8 LSsungen and yon diesen ist keine 
gleich einer linearen Combination der ffbrigen LSsungen~ wKhrend 
jede andere LSsung dieser Gleichung sich aus jenen 8 LSsungen zu- 
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sammensetzen IKsst. 
ist daher 

x4= ~,r,+z,Y~ 

x~= 
wo L , r ~ ,  
abgeleitete 

Die allgemeine LSsung der vorgetegten Gleichung 

+xa Y4 

�9 --, Ys beliebige F ormen 
Gleichungssystem, wenn 

+ x.~ Y~ + x~ Ys 
+x, ~ +x~ y~--x~ r~--x~ Y~, 
sin& Wit erhalten somit alas 

wir in den eben gewonnenen 
Formetn die Ausdriicke auf der rechten Seite 
dieses abgeteit~te Gleichungssystem 
3 LSsungen 

Yt=x4, Y2=-- xa, 

I71 =xs, Y2= O, 

gleieh Null setzen und 
seinerseits besitzt die folgenden 

Ya= O, Y4=-- x3, 

Y,= o, Y~= ~, y ~ = - . , ,  y~= o, 

Aus denselben liisst sich jede andere LSsung 
Gleichungssys~ems zusammensetzen und das niichs~ 
chungssystem laute~ daher 

x~z, + ~ & =o ,  
/ 

- ~ z ,  + x~z~ = o ,  

- - ~ &  - x , & = o ,  
- x~z~ - x,& =o, 

x~ z~ + x~ Z= = o, 
x~z~ + x~z~ = o, 

x, z, + x~ & =o, 
x,& + x~& =o. 

Ys=x2, Y~=O, 
r~=x,, r~=o.  

Y~=*,, lq=x , ,  
r~=o .  L=x, ,  
r , = o ,  r~=x~. 
jenes abgeleiteten 

abgeleitete Glei- 

Dieses Gleichungssystem l~sst keine LSsung zu und die aus dem vor- 
gelegten Modal entsteheude Kette bricht also bei dem 3 t~n Gldchungs- 
systeme ab. 

Um ein allgemeineres Beispiel zu behandeln, betrachten wir den 
Modul (xt, x~, . .o,  xl) and beweisen flir diesen Modal den folgenden 
Sa~z: 

Wird f ~  die Gleiehuag 
(~)  ~, x,  + x2 x~ + . . .  + x. x~ = o 
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die Kette der abgde~eten Gleichungssysteme aufge, stellt, so ~ aN- 

gonein das s t. Gleichungssystem dieser Keite aus ( s '~  1) Gleichungen, 
% 

w~hrend fiir dasse~e die Zahl der zu bestimmenden ~'ormen gleieh (~)  
f %  

( ' )  und die Zahl ~ L6sunge~ des volle~ Li~su~ssy~ems gleich s +  1 ist. 

Die Coefficienten der abgeleiteten Gleichungen sind siimmtiwh tineare 
Formen. 

Wir kSnnen diesen Satz fiir die niederen F~lle ohne Schwierigkei~ 
dutch directe Aufstellung der abgeleiteten Gleichungssysteme best~tigen. 
Was beispielsweise den Fall n ~ 4  anbetritR, so besitzt das Gleichungs- 
system 

die 6 LSsungen 

x , - x : ,  x ~ = - . , ,  x3=- o,  x . =  o ,  
X,=x~,  x ~ -  o ,  ~ = - x , ,  x.--- o ,  

x.=o. x~= .~, x~=-.~, x.= o. 
x , = o ,  x.= x,, x~= o,  x , = - x ~ ,  
x.=o. x.= o. x~= x..x.=-x. 

und das abgeleitete Gleichungssystem lautet daher 

- -  x t  Y t 

xt~Y 2 

- - x l Y  3 

- -  0, 
+ x3y, + x.Y~ ---o, 
- ~ y .  +x~y,=o,  

Die LSsungen dieses Gleichungssystems sind 

Y~-- x3, 

YI=---x,, ~=-- 0, 

I 7 , =  O, Y 2 =  x,, 

Y1~- O, Y:---- O, 

Y2 = - -  ~2, Y~ ~ 0 ,  Y~ =-- xt, 
Y ~ -  o ,  Y ~ -  o ,  
~ -  ~ ,  Y,~- o ,  
Y ~ - - - - x t ,  Y ,~ -  O,  

r~=- o ,  y , =  x,, 
~ =  o, Y4 ---'--x;, 

dritte Gleichuagssys~m der Kette in tier Hieraus ergieb~ sick alas 
Gestalt 

Z ~ ~ h e  ~ z ~ e ~ .  XXXYI. 



~z, -- ~,z~ 
--z~Z, +~Z~ 

+ z~z~ -- ~z~ 

= 0 ,  
-~---0, 

--~Z~ --0, 
-- z, Z~ -- z~Z~ = O, 

+~Z~ -- z~Z, = o. 

Da dieses Gleichungssystem nur die eine LSsung 
z,=x~, z~=~, Z~=x~, z~=~, 

besitz~, so erh~l~ das 4 ~e Gleichungssys~em der Kef~e die Gestalt 

x~U~ = 0, 

xs U~ --0, 
a~U~ --0, 
~v~ =o 

und dieses Gleiehungssystem l~sst offenbar keine LSsung zu. Die 
Kette der abgeleiteten Gleichungssysteme bricht also erst helm 4 t~ 
Gleiehungssysteme ab. 

Um den Sa~ allgemein zu beweisen, folgen wir dem Oedanken- 
gange, welcher dem Bewei~ des Theorems HI zu Grunde liegk Die 
Gleichung (33) l~ss~ insbesondere die folgenden n -  1 LSsungen zu 

x ,  - -  o , x ~  - -  ,r,~ , x ~  = o , . . . ,  x~_~ = o , x , , - - -  z~ , 

x ,  = o , x ~ =  o , x 3  = ,~,,, . . . ,  x ~  - -  o , ~ - - - , r ~ ,  
, i  e e �9 o .  ~ . �9 �9 I , h  ** �9 I �9 �9 �9 r ~,  ~* ** ~ �9 

x,=o, x~=o, x~=o, ..., x~_~=x~, x~=--x~_~. 
Wir nehmen nun eine beliebige LSsung Xi, X2,..., X~ der Gleichung 
(33) an und formen dann dieselbe dutch geeignete Combina~ion~ mit 
den eben angegebenen n -  1 besonderen LSsungen derar~ urn, dass 
an Stelle der Formen X~, X 2 , . . . ,  X~_I solche Formen %re~en, welche 
die Ver~uderhche x,, nicht~ enthal~en. Da in der Gleichung (33) die 
Form X~ mit~ der Ver~,nderlichen ~ mulfiplicir~ erscheint, so wird 
nach dieser Umformung die an S~elle yon X~ %ret~nde Form nothwendig 
iden~ch gleich Null. Wir nehmen jetz~ unseren Sa~z f~r den Fall 
yon ~ ~-1 Ver's ars bewiesen an und schliessen aus dem- 
selben, dass die Gleichung 
(34) ~, x~ + ~ ~ +... + x~_~_~ = o 

genau 2 ~ g e n  besi~z~, yon denen keine eine lineare Com- 

bination tier iibr/gea LSsungen is% und dutch welche jede andere 
LSsung sich zusammense~zen l~st. Da iiberdies naeh jenem S ~ e  die 
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LSsungen s~mmtlich lineare Formen sein sollen, so erhiilt die all- 
gemeinste LSsung yon (34) die Gestalt 

x~ 

x~ 

= ~,, u ,+~,:  ~ + . . .  + ~( . ; , )  u(-; ,) ,  

wo l,,, ~,~,. . . ,  l C-~, ) lineare Formen der n -  1 Ver~nderliohen 

x~, x ~ . . . ,  x._~ und y,, ye,..., y(~) beliebige Formen der n~mlichen 

Ver~derlichen x,, xe,. . . ,  x,_~ bedeuten. Aus den bisherigen Ueher- 
legungen erkennen wir, dass eine jede L5sung der urspriinglich vor- 
gelegten Gleichung (33) sich in die Gestalt 

Z~ -~- 

X~= 

x. z ,  + o + . . .  + x,,y, + . . .  + z (~7~) Y('79' 

o + ~. r2 + . . - +  z~,yl + - . -  + z (~71) ~(.~1), 

X~=--x, Yi--x2Y~ .... + 0 +...+ 0 

bringen liisst, wo :Y,, Y2,-- . ,  Y~--1 Formen der n Ver~ndertichen 
x,, z2,..., x~ und wo y, , . . . ,  y(~-l) Formen der ~ - -  1 Ver~uderlichen 

x 1, x2 , . . . ,  x~-1 bedeuten. Da iiberdies keine der verwende~en be- 
sonderen LSsungen einer linearen Combination der fibrigen LSsungen 
gleich ist, so ist in Uebexeinstimmung mi~ dem obigen Satze die Ge- 
samm~zahl der in Betracht kommenden L5sungen yon (33) gleich 

--(n 2-1) d. h. gleich __(~) und das aus (33) abgeleite~e 

Gleichungssystem erh~lt die Gestalt 

. . .  + y .  + . . .  + z ( . ; , )  = o ,  

�9 . r: +... + ~, r. +... + z (.~,) r(~> = o, 
(35) 

-~-0. - -  x,Y, --x2 Y2 . . . .  + 0 + . . .  + 0 

Um das n~chs~e abgeleita~ Gleichungssys~em aufzu~elte~, ber~ck- 
sich~igen wir, (lass das abgeleitete Gleichungssys~em (35) die folgenden 
LSsungen zulii.sst 
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Y,  = l , t .  Y~ = G ,  . . . ,  y . _ ~  = ~._~, , ,  I". - - - - -  x . ,  

Y . §  = o ,  . . . ,  ~(~) = o, 

Y~ ~ ~ ,  Y~ - -  4~, . . . ,  Y._1 ~ ~_~,~, Y. ~- 0 ,  

r ~ + ,  = - ~ , , . . . ,  ~(~) = o ,  

. . . ,  

Auf Grand derjenigen Betrachttmgen, wie sie frtiher beim Beweise 
des Theorems III angewaad~ warden, erkennt man leicht, dass sich 

and aus den L6sungen 

r ,  = 0, . . . ,  r , _ ,  - -  0, r~ ---- y,, r ,+ ,  = v ~ , . . . ,  Y(~) = y(,~l) 

zusammenseizen liiss~, wo yl,  y2, - -., Y(~71) LSsungen des Gleichungs- 

systems 

z,,v, + z,~v~ + - . .  + ~ ( ~ , )  v(.~l) ~- o (s = 1, ~ , . . . ,  , -  1) 

sin& 
Das le~ztere Gleichtmgssystem ist das aus (34) abgeleitete Glei- 

chtmgssys~em and besi~z~ daher unserem Satze zufolge genau - -  - . ( n 3  1) 

LSsmagen~ yon denen keine eine lineare Combination der iibrigen 
LSsangen ist and aus denen jede andere LSsung sich linear zusammen- 
se~en liiss~. Die Gesammtzahl der in Be~racht kommenden L~sungen 
des aus (33) abgelei~eten Gleichungssystems (35) is~; daher gleich 

( ' 2 1 ) +  ( ' 3  1) d.h. gleich (~ ) ,  was wiederum mit; tmserem Sa~ze 

abereinstimmt. Fahren wit mit dieser Schlussweise for~, so folgt die 
Rich~igkeit unseres Sa~es fiir n Ver~inderliche unbar der u 
dass derselbe fi2r n -  1 Yer~,mderliche gi l l  Da der Sa~ ffir n ~ - 2  
tmmitCelbar einleudhbe~, so ist derselbe allgemein gtillig. 

Die ebe, &arehgefiihrte Untersuchung tier GE~ichung (33) /st vor- 
nehrrdich dezshalb yon pr inc i l~e l l e r  t~edeutung,  ureil dieselbe eine~ 
Be2~g daf@r giebt, dass thatsgchlich der JFall vorkommt, wo die Ketle 
der a b g ~  Gleichungssysteme nic~6t fri~'her a~ nach dem n t~ G~i- 
chungssys6m~ abbricht. 
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Die cl~kterist ische Function eines Moduls. 

Die Enfwickelungen des vodgen Abschnit~s ermSglichen die Be- 
stimmung der Anzahl derjenigen Bedingungen, denen die Coefficienten 
einer Form genfigen miissen, dami~ dieselbe nach einem vorgelegMn 
Modul der Null congruent sei. Um dies einzusehen, betrachbn wir 
den Modul (~'1, ~ '2 , - . . ,  ~'m), wo ~'1, ~ '~ , - . . ,  F~ homogene Formen 
beziehungsweise yon den Ordn~ungen r 1 ~ r 2, . . ,  rm in den n Ver~nder- 
lichen x i ,  x 2 , . . . ,  x~ bedeuten und fragen zun~ichst;, wie vide linear 
yon einander unabh~ngige Formen .F yon der ./~t~, Ordnung es giebt, 
welche nach jenem Modul der Null congruent sind. Aus den Ansatze 

wo At, A+, . . . ,  A+ Formen beziehungsweise yon den Ordnungen 
R - -  r 1 , t~ - -  r2,  . . . ,  1:1 - -  r,~ sind, und aus den en~10rechenden Aus- 
~fihrungen zu Anfang des vorigen Abschnittes erkennen wir, dass jene 
gesuchte Anzahl gleieh ist; der Gesammtzahl der Coefficienten der 
Formen A 1 ,  A.2, . . . ,  A ~ ,  verminder~ um die Zahl derjenigen linear 
unabhingigen LSsungssysteme der Gteichung 

(36) F i X ,  + F ~ X  2 + . . . +  F ~ X ~ - - O ,  

fttr welche X~, X 2 , . . . ,  X~, beziehungsweise Formen yon den Ord- 
nungen _R - -  r l ,  ~ - -  r2 ,  . . ., _R - -  rm sin& Nach den Entwickelungen 
am Schlusse des Abschnittes I setz~ sich eine jede LSsuag dieser Glei- 
chung (36) aus einer endlichen Anzahl yon LSsungen nit; Hiilfe der 
Formeln 

~ - - , ~  .+- t~++~2 ~2 + . - - + - - m - + + . , m  , . - . ,  

zusammen. Bezeichnen wir die Ordnungen der Formen ~. ~ ,  ~ ~,  "",* '~(o 

.o) beziehungsweise n i t  rl ~), r(2 ~}, ., ,(~}, so sind A~ '), A~ ~) A ~ 
" " ~ " " "+ ~ 0 )  

Formen beziehungsweise yon den Ordnungen R--r~--r~i )~  ~ - - r ~ - - r ~ x ) , . . .  

- - r  (x) . Wit erhalt~en daher die verlangt;e &nzahl der linear 

unabh~ingigen L'Ssungssysteme der Gleichung (36), wean wit die Ge- 
samm~ahl tier in den Formen A~ ~), A~)~ A ~} auftretenden Coeffi- �9 " " ,  ~ , ( t )  

cienbn um diejenige Zahl vermindern, welche an~ebt, wie viel linear 
unabh~ngige Systeme yon Formen X~x)~ X~') , . . . ,  X~:~} ,+on den Ord- 

den Gleiehungen 

(37) X -mzm) ~<i) XO~ , + §  . . . .  , 
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genfigen. Zur BesGmmung dieser le|;zt;eren Zahl haben wir in enb- 
sprechender Weise zu beriicksichtigen, dass die s~mmtlichen LSsungen 
yon (37) dutch lineare Combinatdon einer gewissen endlichen Anzahl 
derselben erhalfen werden kbnnen.. Es ist~ daher ersichtlich~ dass jene 
gesuchte Zahl sich ergieb~, wenn man die Anzahl der in den be- 
treffenden Formen auftreimnden Coeflicienten um die Zahl der linear 
unabt~ngigen LSsungen des aus (37) abgeleiteten Gleichungssystems 
vezmindert. Dieses Veffahren hat; man in entsprechender Weise fort- 
zusetzen, bis die KeN:e der aus (36) abgeleiteten Gleichungssysteme 
abbricht;. Ist; nun die Ordnung /~ der Form .F so gross gew~hl~, 
dass die bei diesem Verfahren auftrel~enden Zahlen /~- - r , ,  /~--r~,. . . ,  
/~ - -  r ~ ,  / ~  - r ,  - -  r~ ~), 2~ - -  r ,  - -  r(, ~ / ~  - -  r~ r (~) } �9 �9 .} - -  r~(1)~ " . . 

s~anmflich positiv bleiben, so lassen sich alle jene knzahlen mi~ Htilfe 
ganzzahliger Coefficien~en aus denjenigen Zahlen zusammensetzen, 
welche angeben, wie viele Glieder die allgemeinen Formen yon den 
Ordnungen t ~ - -  r~ , ~ - - r ~ ,  . . . ,  7~ - -  r~, , ~ - -  r~--r~, ~), t ~ - - r ~  - - r~) , . . .  

. . (0  en~al~en. Die letzteren Zahlen werden d~reh die / ~ - - r ~ - - ,  (~ ) , . . .  

Ausdrficke 

(~ --r ,  -}- 1) (~t -- r, -I-~).:. (2~ -- r, + ~ -  1) 
1 . 2 . . . ( ~ - - I )  ~ " " "~ 

( ~ -  ~,~ + ,) (~ - ~  + ~ ) . . .  (~ - ~ + ~ -  ~) 

(~ - - r l - -  ~',(I) 2v I) (_~ - -~ ' , -  ~ ( I )  _I_ 2 ) . . .  ( ~  - -  f , - -  ~.( i)  - I -  " - -  I )  

1 . 2 . . o ( ~ - - I )  ' " ' "  

~,(i) "~- I )  rl ~Ai) re(i) 
1.2...(~--I) 

gegeben und sind daher gauze rationale Fanetionen yore n - - I  ten 
Grade in Bezug auf/~. In Folge dieses Umstandes ist somi~ auch die 
Zahl der nach dem vorgelegtmn Modul tier Null congruenten Formen 
fiir gentigead grosse Wer~he yon 7~ gleieh einer ganzen rationalen 
Function yon/~,  dei.en Coefficienten bestimmte, nur yon dem Modut 
(-'-~1,-F2,--", .F~,~) abh~ugige rationale Zahlen sind. Suhtrahiren wir 
diese Zahl yon der Zahl der Glieder einer allgemeinen Form der Ord- 
nung R,  so erhaltmn wir die Zahl der yon einander unabh~ngigen 
Bedingungen, welchen die Coefficienimn einer Form der/~te, Ordnung 
genfigen mfissen, damH; diesetbe nach dem Modul (.F1, ~ 2 , - - - ,  .F~) 
der Null congruent; sei. Die so .definir~ Zahl is~ daher ebenfalls ffir 
geniigend grosse Werthe yon .R gleich einer ganzen rationalen Function 
yon .~ mit rationalen Zahlencoefficien~n..Wit bezeichnen diese ganze 
Function mit; ~(/~) und nennen dieselbe die charak t ;e r i s t ; i sche  
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F u n c t i o n  des Moduls F2, . . . ,  Der ebe  gefiihr e Nach- 
weis dzr J~xistenz der chara~teristische~ Functian stiitzt sieh auf die 
~ n d l i c h k e i t  der Ket te  der abgelei te ten Gteichungssysteme 
und beruht daher wesent l ich  auf dem Theorem I I I  des vorige~ 
Abschni~es. 

Was die Grenze anbetrifft, oberhalb welcher die charakteristische 
Function ~(/~) die in Rede stehende Anzahl yon Bedingtmgen dar- 
stellt, so zeigen die obigen Entwickelungen unmittelbar, wie dieselbe 
aus den Ordnungen derjenigen Formen zu berechnen ist, welche in 
der Kette der aus (36) abgeleiteten Gleichungssysteme als LSsungen 
auftreten. 

Das eben gewonnene Ergebniss l~sst sich offenbar aach in 
fo]gender Weise aussprechen: Wenn wir allgemein mit cR die Zahl 
der linear unabh~ngigen Bedingungen bezeichnen, denen eine Form 
yon der Ordnung iq genfigen muss, damit dieselbe nach dem Modal 
(~'~, F2,...,/~'~,) der Null congruent sei, so ist die unendliche Za~len- 
reihe cl, c2, c 3, � 9  yon einem gewissen Elemente an eine arithmetische 
Reihe yon einer unterhalb der Zahl n liegenden Ordnung. In der 
That ist i~ir genfigend grosse ~Werthe yon //jederzeit 

Die le~ztere Ueberlegnng begriindet zagleich eine Eintheilung der 
Moduln, indem wir alle dieje~igen Moduln zu der n~mlichen Classe 
rechnen, f~r welche jene Zahlenreihen cl, c2, c ~ , . . ,  elementweise 
genau iibereinstimmen. 

Um die allgemeine Gestalt der charakteristischen Function zu er- 
mit~ela, setzen wir 

a , 

wo a, ao, al, a2, . . . ,  aa ganze positive oder negative Zahlen sind 
and der Grad d jedenfalls kleiner ist als die Zahl n d e r  in den ge- 
gebenen Formen aaftretenden Ver'~nderlichen. Gem,s  der Bedeuttmg 
der charakteristischen Function erh~ilt ;t(/~) fiir alle ganzzahligen ober- 
halb einer bestimmten Grenze liegenden Argumente ~ stats ganz- 
zahlige Werthe and hieraus l~sst sich beweisen, dass ~(/~) fiberhaapt 
flit alle ga~zzahligen Argumente ganzzahlige Werthe annimm~. Dean 
g~be es eine ganze Zahl r, far welche der Ausdruck 

a0 ~ air  -~- a~ -~ de-. . .--~ aar a 
nicht dutch den ~enner a theilbar w~re, so wKre auch der Ausdruck 

ao -[- a~ (r d:- ka) -3 t- a2 (r -[- ka) ~ - { - . . .  -{- aa(r -{- ka)5" 
f~r beliebige ganzzahlige Werthe yon k nichl dutch a theilbar and 
fdtglich wSre auch Z(r -{~ k a) eine gebrochene Zahl. Hierin lieg4 ei~ 
Widerspmch, sobald wir k so bes4immt denken, dass r -{ -ka  jene 
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Grenze fiberschreite~, oberhalb welcher ~(~) nothwendig eine ganze 
Zahl wird. 

Nachdem dies erkannt is~, se~zen wir 

wo in ~blicher Weise 

( ~ )  , ( ~ - - , ) . . .  ( R - - s +  a) 
ffi 1 . ~ . . . s  (s~-- l , 2 , . . . . , d )  

bedeutet. Da den obigen Ausffihrungen zufolge %(R) insbesondere 
aach ff~ /~ ~ 0 dne ganze Zahl ergiebt b so ist go eine ganze Zahl 
und in en~spreehender Weise erkennen wit der Reihe nach dutch 
Einsetzen der Werthe i~ ~- 1, 2 , . . . ,  d, dass auch die anderen'Coeffi- 
cienten gl, g2, . - . ,  ~:a gauze Zahlen sind. Da umgekehr~ allgemein 

der 'Binomialcoefficien~ ( s  ~ )  fiir alle ganzzahligen Wert~e gon eine 

gauze gahl wird, so ist; der obige Ausdruek, falls man unter go, Xl, g+., ..., gd 
gauze Zahlen versteht, die allgemeinste gauze rationale Function yon 
der Besehaffenhei~, dass sie fiir alle ganzzahligen'Argumen~e selber 
ganzzahlige Wer~he annimm~. 

Die bisherigen Ergebnisse dieses Abschnittes fassen w~r in dem 
folgenden Theoreme zusammen: 

T h e o r e m  IV. Die Zaht der yon einander unabMingigen linearen 
~edingungen, denen die Uoeffwiente~ einer ~orm yon der Ordnung R 
geniigen miissen, damit dieselbe nach einem vorgdegten Modul { t~1, ~2, ...,E~) 
der Zrull congruent sei, wird, falls 1~ oberhalb einer bestimmten Grenze 
l@gt, dutch die _Formel 

dargesteP2, wo ~ ,  ~ ,  ~ , . .  ., ~a gewisse dem Modul (2'1, 2 '~ , . . . ,  1~) 
e~genthiimliche gan~e Zahlen bedeuten. Die ganze ~'unction g(l~) yore 
Grade d in ~ez~g auf 1~ he~sst die charakter~st~c~e ~une2ion des 
Modu~s 6L,/~, - .  - , / v , ~ ) .  

Die obigen Ausfiibxungen liefern zugleieh eine allgemeine Methode 
zur Bestimmung der charakteristischen Function. Um diese Methode 
an einigen Beispieten zu erlgutern, betrachten wir zun~hst den Modul 
(~Y'l~ 272,/~'~)~ wo $'~,.Fe, 2'~ die n~mlichen 3 quadratischen Formen 
der 4 homogenen Ver~uderlichen x~, xz, x3, x, bedeuten, welehe bereits 
in Abschnitt I and III ausfiihrlich behandelt worden sin& Die Zahl 
der Coefficienten einer quatern~en Form yon der Ordnung/~ betr~g~ 

+ 1) + + 3). Zah] dieje ge Zah  zu 
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vermindern, welche angle-hi, Me viel linear unabb~ng]ge Formen F 
yon der Ordnung R dutch die Formel 

~---A~ F~ + &i% + A3P3 

darstellbar sind und die ]etztere Zahl erhalten wit wiederum dadurch, 
dass wir die Gesammtzahl der Glieder in den 3 Formen A1, A2, .A 3 

der ~ -  2 te~ Ordnung, n~mlich die Zahl 3 - ~  - -  

um die Zahl derjenigen linear unabh~ingigen Formensysteme X,, X~ X 3 
yon der O r d n u n g / ~ -  2 vermindern, welche der Gleichung 

geniigen. Wie am Schlusse des Abschnittes I gezeigs worden ist, 
erh~t die allgemeinste LSsung dieser Gleichung die Gestalt 

X~ = Al(~x 3 -[- A2(~}x~, 
X2 = Al~l)x2 + A2ahr3, 
X s ~ A,(1)x, + A2(~}x2. 

Die zuletzt verlangte Zahl is~ daher gleich der Gesammtzahl der Glieder 
in den beiden Fomen Ala} , A~ ~) der t t  - -  3 te~ Ordnung, n~nlich 

1 (R - -  2) (R - -  1)/~. Da nach den Ausff~rungen in Ab- gleich 2- %- 

schnit~ HI das abgeleitete Gleichungssystem 

x~X~(~) + xsX~(~) = 0, 
x~ X~(~) + x2X~(~) = 0 

1 ( R -  2 ) (~  1)/t keine LSsung mehr zul~sst, so sind jene 2 . -  d- 

LSsungssysteme s~mmtlich linear yon einander unabh~ngig und die 
urspr~inglich gesuchte Zahl wird 

(~  1) ~(i~ + 1) ( ~ +  ~ ) ( 1 ~ + ~ ) ( ~ + 3 ) - - 3 - ~  --  
1 + 2 . x ( ~ -  ~ ) (~-  ~)~ 

=~+3~. 
Dieses Ergebniss entspricht tier Thatsache, duss eine Fl~iche R t~r Oral- 
hung genau 1 -]-3/~ Bedingungen erffi!len muss, damit sie eine ge- 
gebeae Raumcurve 3 ~ Ordnung enthalte. 

Usa ferner die char~kteristische Function des Moduls (~,E~, . . . , t ' s )  
zu berechnen, wo t ' I ,  $'~, . . . ,  t 's  die in Abschnitt I angegebenen 
quadratischen Formen der 5 Ver~nderlichen Xl, x~ , . . . , x~  sind, be- 
nutzea wit die in Ahsc]~i~ HI ffir diesen Modul aufges~ll~ Kette 
der abgeleiteten Gleichv/ngssysteme. Aus den Ordnu~gen din; in diesen 
Gleichungssystemen als Coefilcienten auftretenden Formen erhal_t~n w:rr 
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ffir die charakterisfische Function des Moduls ( F ~ , . F ~ , . . . ,  .F6) den 
Ausdruck 

~(R) = (~+  ~) (I~+2~ (i~+~)(s162 
1 . 2 . 3 . 4  

3_ 8 (~ -- ~) (2~ -- ~) 2~(~ + 1) 
1 . 2 . 3 . 4  

= I -[- 4/~. 

- - 6  

- - 3  

1 . 2 . 3 . 4  

(/r (R--~) (/~-- ~)/r 
1 . 2 . 3 . 4  

Behandel~ man in gleicher Weise die oben fiir den Modul 
(x~, x e , . . . ,  x~) aufgesfellte Kette der abgeleiteten Gleichungssysteme, 
so ergiebt sich fiir die charakbrisfische Function dieses Moduls der 
Werth 

Z(R) = (2~+i) (2r  ( 2 ~ + n - , )  _ ( ? )  2~(2~+1). . .  ( / ~ + n - ~  
1 . 2 . . .  (~-- ,)  1 . 2 . . .  (n--l)  

+ ( ~ )  (~- -  1)/~. . .  ( R + ~ - -  3) . . . .  
I. 2 . . .  ('~,-- i) 

+ ( _  1) ~ ( ~ - ~ +  r , ( t r  2) , . .  (~ - 1) 
1 .2 . . .  ( n - l )  

--~ 01 

mid in der That is~ offenbar jede beliebige Form nach dem Modul 
( x  1, x~, . . ., x~) der Null congruent. 

Ist ferner 2 '  eine beliebige tern~re Form yon der 0rdnung r, so 
erh~lt die charak~ristische Function des dutch diese Form bestimmten 
Modu]s (F)  den Werth 

z ( R )  = (R-k 1) (2~ q- 2) (/~ - -  r + 1) (/r - -  r + ~) 
1 . 2  1 . 2  

1 ( r - - 1 ) ( r - - 2 ) + l + r B ,  
2 

Sind ~'1, ~'e zwei beliebige brn~re Formen yon den 0rdnungen 
r l ,  r2, welche nicht beide die nii~nliche Form als Factor enthalten, so 
wird fiir den Modul (/~'t, 2'~) 

= 
(/~ + I) (/r + 2) (~ -- n + I) (~ -- n + ~) 

1 . 2  I . 2  

1.2 

1 . 2  

Bedeubn endlbh FI ,  F2 zwei quabrniire Formen der Ordnungen 
, r~ ohne gemeinsamen Face t ,  ~o ergiebt sich fiir die charak~risfisehe 

Fu~cfiou des Moduls ( ~ ,  F2) der Werth 
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z ( n )  = 
1 . 2 . 3  1 . 2 . 3  

1 . 2 . 3  

1 . 2 . 3  
1 

~-  2rl  r2 - -  -ff rL r2 (r I -[- r2)-J- rl r 2 ~ .  

~Die in diesem und in dem vorigen Abschnit~e gewonnenen all- 
gemeinen Principien setzen uns in den Stand, den besunderen Fall 
eines Moduls yon biniiren Formen im Sinne tmserer Theorie voll- 
kommen erschSpfend zu behandeln. Um dies zu zeigen, sei der Modul 
(Fj ,  ~'2, �9 - -, ~'-,) vorgelegt, w o / v l ,  ~ , . . . ,  ~'m bin~.re Formen sind, 
yon denen wit der Einfaehheit halber voraussetzen~ dass sie nich~ 
siimmtlich eine und dieselbe Form als Factor en~alten und dass ferner 
alle yon-der niimlichen Ordnung r sind. Wegen der ers~eren Voraus- 
setzung ist die charakteristische Function des Moduls ($'~,/~e ~ . . . ,  Fro) 
gleich Null. Denn unter jener Vorausselzung l~sst sich eine jede bin~.re 
Form /~ yon gentigend hoher 0 rdnung/~  in die Gestal~ 

F----  + + . . .  + 

bringen~ wo A ~  A ~ . . . ,  A~,, siimmflich Formen yon der Ordnung 
/ ~ -  r sin& Der Beweis dieser Thatsache wurde bereits zu Anfang 
des Abschnittes I kurz angedeute~ Andererseits berechnen wit die 
niimliche charak~eristisehe Function naeh der oben dargelegten all- 
gemeinen Methode, indem wit Ftir die Gleiehung 

+ �9 �9 . + 0 

ein volles System yon LSsungen aufstellen~ in welehem keine dutch 
lineare Combination der anderen LSsungen des Sys~ns  erhalten werden 
kann. Dieses Sysiem yon LSsungen sei 

X~ ~-- G~,, Xe  = G~,,  . . . ,  X~-- G~., (s------ 1 , 2 , . . . , m a ) )  

und wir bezeichnen allgemein die den Formen G~,, G~,, . . . ,  G~, 
gemeinsame Ordnung mit r~. Zwisehen diesen LSsungen besteht keine 
Relation; dean das aus obiger Gleichung abgele~te  Gleichangssystem 

O,, X~ ~) ~}- G,~ X~ (~) -]- - �9 - -{- G (~) X~()~) ----0 (t ~- 1, 2 , . . . ,  m) 

besitz4 zufolge yon Theorem III des vorigen Absclmittes kei~e LSsung. 
Die in Rede steheade,charak~erist~sche Function wird daher 

8 

Z(/~) = / ~  -}- 1 - -  m ( R  - -  ~ -{- 1) -}- ~ (/~ - -  r - -  r,  -{- 1)  

~- /~(m (t) - -  m -{- i)  - -  ( r - -  1) (m(1) - -  m -]- 1) -i t- r - -  rs~ 
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wo die Summe fiber s ~--1, 2, . . . ,  too) zu erstrecken isK Setzen wir 
auf tier rechten Seite den Coefficienten yon :R und das yon /~ freie 
Glied einzela gleich Null, so ergiebt sich 

m (1) ~ -  m ~ 1 ) 

r~-- rt + r2 + " " + ~ - 1 ,  

und hieraus gewi~nen wir den Satz: 

~esit~en die m bintiren 2"ormen ~ ,  1~, . . ., ~ yon der Ordnung r 
~icht siimmth'ch eine~ gemeinsamen Factor, so besteht das volle Lgsungs- 
system der Gteichung 

G x I  + ~ ' :x~  + � 9  + ~ . ,x~,  = o 
stets aus m -  1 L6sunge~ 

X, =---- a,~, X,---- G,, ,  . . . ,  X~--~ G~,, ( s - -  1 , 2 ,  . . . ,  m - -  1) 

wdche dutch keine ~elation mit einander verkniipft sind, und die Summe 
der Ordnungen divser m ~ 1 Zgsungen kommt der Zahl r gleich*). 

Aus den m -  1 Gleichungen 

a~,~'~ if- a~,~Fe -]- - �9 �9 q- G,~,E,, ~- 0 (s = 1, 2,  . . . ,  m - -  1) 
folg~ 

wo / ) ~ , / ) ~ ) . . . , / ) , ,  die entsprechenden m - -  1 reihigen Det~rminanten 
der Matrix 

G1 G~I G J  . . .  G~I } 

G~ G2 G2 . . .  G~2 

G1, ~-~ G~, ~-1 a~. ~-1 �9 �9 - G, , , , - I  I 

bedeuten. Da nach dem eben bewiesenen Satze die 0rdnung dieser 
Determinanh~n in Bezug auf die bin~iren Ver~inderlichen x~, x 2 gleich 
r ist, so shad jene Formen, abgesehen yon einem unwesentlichen 
Zahlenfactor, den en~prechenden Determinanten jener Matrix gleieh 
und wit se~zen demnach 

~ / ) J ,  / ~  ~ - / ) 2 ,  - - - ,  F~  = / ) ~ .  

Diese Formeln dienen umgekehr~ dazu, um die Formen ~ , ~  ...~2'~ 
zu ermWeeln, wenn die m -  1 LSsungssysteme 

Xl  ~ a~, ,  X~ ~ a~,,  . . . ,  X ~  G , ,  ( s ~  1 , 3 ,  . . . ,  m - -  1) 

gegeben scrod. Auch erkennen wir zagleich, dass .die Ordnungen 
rt,  r~, . . . )  rm-~ keiner besehr~nkenden Bedingang unterliegen, ab- 
gesehen davon, dass ihre Samme .gleich r isK 

~) I)iesen Satz hat berei~ F. M e y e r  vermuthet und bei seinea Unter- 
suchungen ~ber reducibIe Fanctionen a~ Vorauu~t~ung eingefiihrt; vgl. Math. 
Ann., B~. 30, S. 38. 
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Die Zahlen r 1, r 2 ~ . . . ,  r~_i bestJmmen ffberdies, wie man teicht 
einsieht, vollkommen die oben allgemein definirb Zahlenreihe c~,c~, e~, . . .  

fiir den vorgelegten Modul (~j,  ~ '2,--- ,  ~ )  und infolge dessen auch 
die Classe, welcher dieser Modul angehSrt: Ffir alle die Zahl 2 r  ~ 1 

fibersteigender. Werthe yon /~ wird c~ ~ 2 : ( ~ ) ~  0. Endlich kann 
man die beiden xorhin gemachten Yoraussetzungen fallen lassen, dass 
die Formen des vorgelegten Moduls simmtlich yon der n~mlichen 
Ordnung and ohne gemeinsamen Theiler sind und man erkennt Ieicht, 
welche Abiuderungen dann in den gefundenen Resultaten vorzu- 
nehmen sind. 

Die eben angesbllten Betraehtungen erledigen im Wesentlichen 
die Theorie der biniren Moduln. Die weitere Aufgabe besteht in einer 
enbprechenden Behandlung der Theorie derjenigen Moduln, welche 
Formen mit drei und mehr Verinderlichen enthal~en. Doch sei bier 
nur hervorgehoben, dass es zu einer solchen Fortentwickelung der 
Theode vor Al!em der Verallgemeinerung des N o e t her" schen F~nda- 
men~lsatzes*) f~ir Formen yon mehr Ver~nderlichen sowie einer ein- 
gehenden Untersuehung aller hierbei in Be~rach~ kommenden Aus- 
nahmef~lle bedarf. 

Die in Abschnitt I citirten Untersuchungen fiber Modulsysteme 
erSrte~n eine Reihe weiterer fiir die Theode der ModuIn fundament~ter 
Begdffe. Die betreffenden Defmitionen sind nach gedngffigigen i b -  
~nderungen auch ffir die bier hetrachteten Moduln yon homogenen 
Formen giiltig. Wit besehiftigen uns insbesondere mit den Begriffen des 
, , k l e i n s t e n  e n t h a l t e n d e n "  und des , , g rSss ten  g e m e i n s a m e n  ~ 
Moduls**). Sind irgend zwei homogene Moduln (Fl, ~'2,--., ~,~) und 
(Ht, H2, . . . ,  H~) vorgelegt, so s~elle man zun~ichst f~ir die Gteichung 

P , X ,  + ~ X ~  + . . . +  ~'~,X~ = ~ Y, + ~ Y ~  + . .  �9 + 2/~r~ 

das volle L~sungssys~em 

x ~ = ~ , , ,  x ~ = ~ , ,  . . ,  x ~ = ~  1 (s--1 2, k) 
:Y,--1t~,, y~__- -~ , , .  ., ~ - - - - H ~ . _  - -  ' " ' "  

auf und bilde dann die Formen 

( s=  i, ~, ...,~). 
Der Modu! (K~, K ~ , . . . ,  ~ )  is[ tier kleinste enfl~alf~nde Modal 
Anderersei~s erhil~ man dutch Zu~zmnens~ellung r eh~zelnen Fomen 

*) Vgl. M. Noether, Math..Ann. Bd. 6 und 30, sowie A, Voss, Math. Ann. 
Bd. 27 und L. S t i c k e t b e r g e r ,  Math. Ann. t ~  30. 

*'9 Vgl. betreffs tier Begri~beSV~Lmmung: L. Kronecker, Crelle's Jou~al 
Bd. 92, S~ 78 sowie 1%. Dedekind und H. Weber, Crelle's Journal B~92~ 
8, 197. 
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der beiden vorgelegten Moduln den grSss~en gemoinsamen Modul in 
der Ges~l~ 

(F1, ~'~, . � 9  F~,  H, ,  H ~ , . . . ,  R~) - ( ~ ,  G ~ , . . . ,  G~). 

Es besteht nun eine sehr einfache Beziehung zwischen den charak- 
teristischen Func~onen Zx und X~r der beiden vorge]egten Moduln und 
den charak~eris~schen Func~onen ZK und Ze des kleinw enthaI%enden 
und des grSssten gemeinsamen Modu|s. Um diese Beziehung herzu- 
lei%en, bflden wit zun~chs~ ein System SF yon linear unabh~ngigen 
Formen/~ter Ordnung, welche s~mmtlich naeh dem Modul (F,, F2, ...,.F~) 
der Null congruen~ sind und aus denen sich jede audere Form .~ter 
Ordnung yon der n~mlichen Beschaffenheit linear zusammense~en 
l~sst. Wenn/~ eine gewisse Grenze iibersteig~ so ist die Zahl der 
Formen dieses Systemg SF gleich ~ ( / ~ ) -  ~(/~),  wo q~(/~) die Zahl 
der Glieder einer allgemeinen Form /~t~. Ordnung bedeutet. Ferner 
bfiden wit ein volles System Sx yon linear unabh~ngigen Formen der 
//t~ Ordnung, welche sowohl nach dem Modul (/'1, F2, . . . , /~m) aIs 
auch zugIeich nach clem Modul (H~, H ~ , . . . ,  H~) der Null congruent 
sind. Diese Formen sind s~immtlich gleich linearen Combinationen 
der Formen des Systems S~. Die Anzahl der Formen des Systems SK 
is~ fttr genfigend grosse Werthe yon/~ gleich ~(R) - -  ~x(/~). Endlich 
bilden wit ein System S yon Formen, welche die Formen des Systems 
Sx zu einem vollen System S~ yon linear unabh~gigen und nach dem 
Modul (Hi, H~, . . . , / ir~) der Null congruenten Formen erg~mzen. Die 
Zahl tier Formen des Systems S~ ist ~ (/~) ~ ~ ( .~ )  und da die Formen 
tier Systeme Sund S~r zusammen die Formen des Sys~ms S~r ergeben, 
so is~ die Zahl tier Formea des Systems S gleich 

Nun sind, wie aus tier angegebenen Bildungsweise hervorgeht, die Formen 
tier beiden Systeme ~q~ und S linear yon einander unabh~ngig und anderer- 
seik~ kann mau dutch lineare Combination der Formen dieser beiden 
Systeme S~ und S alle Formen herstellen, welche fiberhaupt lineare 
Combina~ionen yon Formen der Systeme ~q~ und ~q~ sind. Es bilden also 
die Formen der Systeme s und S zusammengenommeh ein volles 
Sys~m ~e yon linear unabh~ngigen Formen /~e~ Ordnung, welche 
nach dem Modul (G,, G ~ . . . ,  d~) der Null congruen~ sind. Den 
obigen Beh~,cht~mgen zufolge is~ die Gesamm~zahl der Formen in den 
Sys~men B~ and B gleich ~(/~) - -  ~( /~)  -}- ~( /~)  - -  ~0~(/~) und 
ande~rsei~s ist die Zahl der Formen des Systems Se gleich q~(/~)--Ze(/~). 
Diese beiden Zahlen sind d~:her .einander gleich d. h. 

�9 ( ~ )  - z~(~)  ~ + ~ ( ~ )  ~ z~ (~ )  = ~ ( ~ )  - z~ (~ )  
oeler 
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Wit sprechen dieses Ergebniss in folgendem Sah:e aus: 
1)ie Summe der charaI~4~tischen lm~mctionen eweier beliebigen 

Modul~ ist gleich der Summe do" charald~istischen Fu~ctior~m fdr den 
k l e i ~  enthalten3en und den grSssten geme:casamen Modul. 

Zum Schlusse dieses Abschnfl;tes mSge nodh kurz der Weg be- 
zeichnet; werden, wie sich die eben gewonnenen allgemeinen Resultate 
fiir die Theorie der algebraischen Gebilde verwenden ]assen. 

Es "sei zun~ichst; im drei-dimensionalen Raume eine Curve oder ein 
System yon Curven und Punkten gegeben. Durch dieses Gebilde 
sich nach einem in Abschnit:t; I bewiesenen Satze stet, s eine endliche 
Zahl yon Ftiichen 

F~--o, ~ = o , . . . ,  ~ - o  
solcher Art hlndurch legen, das jede andere das Gebilde enthaltende 
Fl.~che dutch eine Gleichung yon der Gestalt; 

&~'~ + A~'~ + . . .  + A~ '~  = 0 

dargestellt; wird. Diese Ueberlegung zeigt, dass jedem atgebraischen 
Gebilde ein Modul (.El, F2, . . . , / v )  und (:lurch (lessen Vermittelung 
eine bestdmmte charakteristische Function X(.R) zugehSrk Die te~tere 
Function giebt; dann an, wie viele yon einander unabh~ngige Be- 
dingungen eine Fl~che yon der eine gewisse Grenze iiberschreitenden 
Ordnung R efffillen mtisse, damit; sie das betxeffende Gebilde ent;halte. 
So hat~ die dbarakteristische Function einer doppelpunktslosen Raum- 
curve yon der Ordnung r u n d  dem Geschlechh~ 1o den Wer~h*) 

z(~) = - - p +  I + ~ .  
Als BeispieI diene die cubische Raumcurve, deren charak~ristische 

Funcbion zufolge der vorhin in diesem Abscbnii;te ausgeffihrten Rech- 
hung den Werth 1 .-{--3/~ erhiilt~. 

Ftir die Sctmi~tcm-ve zweier Fl~ichen yon den Ordnungen r:t und r~ 
ergiebt; sich der frfiheren Rechnung znfo!ge die charakterisfische Function 

1 
Z (1~) = 2 st r2 - -  ~- ri r:~ (rl + r~) + rl r2/L 

Um zugleich im hnsehtuss an die let;zteren B e t r a e ~ e n  die 
Bedeutung des zuvor abgeleiteten allgemeinen Sat;zes tiber die cba~ak- 
teris~schen FuncCionen zu erl~uCem, wenden ws denselben auf die 
I ~ u n g  einer Aufgabe aus der Theorie der Raumcurven an. F~ mSgen 
zwei Raumcazrcen ohne Doppelpun~e yon den Ordnungen p~, P2 und 
beziehungsweise yon den Geschlechtorn j~, 1o~ zasammen den voU~ 
s * ~ n  D~rchschnitt zweier Ftgchen K~ ~-O, ~ -~-0 yon dea Ord- 
nungen r~, r~ bilden. Die den beiden Raumcurven eige, uen Moduht 

*) Vgl. M. Noe the r ,  Crelle's Journal Bd. 93, S. 295. 
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seien (/PI, h'~,..., ~'~) und (II~, H~, . .., .II~). Der kleinste ent- 
hal~ende Modul dieser beiden Moduln ist (]ann (Ki, K~) und der 
grSsste gemeinsame Modul (~,/~,~.., ~'~, ~r~, H~,..., Ha) wird 
geometrisch dutch diejen~gen Punk~e dargesteilt, welche beiden Raum- 
curven gemeinsam sind. Die Zahl dieser Punkte sei ~. Die in Be- 
tracht kommenden charakteristischen Functionen sind 

7~(l~) = - -  p, -{- 1 -{- r  

1 
Zx(l~) = 2r,  r~ ~ r l r : ( r  ' -~ rz) ~- r, re R , 

z (R) = q 

und die h~wendtmg unseres Satzes 

ergieb~ fiir die Zahl der den beiden Raumcurven gemeinsamen Punkte 
den Werth 

1 
o = - -  2r, r2 r,r (r, + -- P2-}- 2. 

Was die Verallgemeinertmg dieser Betrachtungen auf I~ume yon 
beliebig vielen Dimensionen anbetrifft, so erscheinen noch die folgenden 
Resul~a~e bemerkenswerth. Es sei in einem Raume yon beliebig vielen 
Dimensionen ein algebraisches Gebilde gegeben und der zu diesem 
algebralschen Gebilde zugehSrige Modul mSge die charak~eris~ische 
FunctSon 

dann giebt der Grad d dieser charakteristischen besitzen; .Function 
die Dimension und der Coeffwient 7~ die Ordnung des algebraischen 
Gebildes an, w~hrend die iibrigen Coefficienten ~ ,  gl, . - . ,  ~d-~ mit 
den yon M. Noether*)  definirten nnd behandel~en Geschlechtszahlen 
des Gebildes in engem Zusammenhange stehen. Der allgemeine Beweis 
hierftir beraht aaf dem Schlusse yon n -  1 auf n Ver'~iaderliche. Wie 
man sieh~ ~ d e n  sieh die eden angegebenen S~ze in dem Falle der 
Curve ira dreidimensionalen Raume in der Tha~ bes~igr 

Iawiefern umgekehr~ ein Modul dutch die Gesammthei~ der W e ~ -  
systeme begdmm~ ist, welehe die einzelnen Formen d~ Modals gleich- 
zei~ig zu Null maehen, ist eine Frage, welche erst dareh eiae syste- 
matische mad alle mSglichen Ausnahme~le umfassende Untersuchang 
des Noe~her'schen Ftmdamen:mlsat~s ffir beliebige Dimensionenzahl 
eine bes and allgemeingul" ~ige Beantwortung finden kann. 

*) Vgl. Y~tL Ann. Bd. 2 und 8. 
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Endlich sei noeh auf die yon A. Cay l ey ,  G. Sa lmon ,  S. R o b e r t s  
und A. Br411 ausgebildete Theorie der sogenannten beschr~nkten 
Gleichungssysteme *) hingewiesen, da insbesondere fiir diesen Zweig 
der Algebra under Beg-rift der charakteristischen Function eine wirk- 
same Fragestetlung sowie einen einheiflichen Gesichtspunk~ liefert~ Ist 
beispielsweise eine Raumcurve gegeben und betrachten wir irgend drei 
dieselbe enthaltende Fl~chen E 1 ~ 0, F 2 ~ 0, ~'~ ~ 0 beziehungsweise 
yon den Ordnungen r j ,  r2, r3, so ist die Zahi der Schnittpunkte dieser 
Fl~ichen, welche ausserhalb jener Raumcurve liegen, offenbar gleich 
der charakteristischen Function des bIoduls ( ~ ,  J~'2, ~'3), verminder~ 
um die charakteristische Functian der Raumcurve. Diese Schlussweise 
f~ihr~ in der That zu einem verallgemeinerung'sf~higen Beweise f ~  den 
bekannten Satz, wonach die Zahl der dutch eine gemeinsame Raum- 
curve absorbir~en Sctmittpunkte jener drei Fl~chen gleich O(r~+r2+r~)--~ 
ist, wenn 0 die Ordnuhg der Raumcurve und r eine andere jener Raum- 
curve eigene Constante, den sogenannten Rang derselben, bedeuteL 

Diese Angaben mSgen geniigen, um zu zeigen, wie die in diesem 
Abschnitte entwickelte Theorie der charakteris~schen Function zu einer 
einheitlichen und fibersichtlichen Behandlung der einem algebraist-hen 
Gebilde eigenthiimlichen Zahlen (Dimension, Ordnung, GescMech~er~ 
Rang u. s. w.) ffihrt~ Die weitere Aufgabe der Theorie w~ire nunmehr 
die wirkliche Durchffihrung der diesen Anzahibestimmungen zu Grunde 
liegenden algebraischen Processe. 

Vo 

Die Theorio der algebraischen Invarianton. 

Die in Abschnit~ I entwickelten Principien bew~hren ihre Kraft 
insbesondere auch in demjenigen Theile der Algebra, welcher yon den 
bei linearen Substitu~ionen der Ver~ndeytichen invariant bleibenden 
Formen handelt. Bekanntlich hat zuerst P. Gordan**) bewiesen, dass 
die Invarianten eines Systems yon bin~en Grundformen mit einer 
Ver~nderlichenreihe xt~ x~ s~immflich gauze und rationale Func~onen 
einer endlichen A~zahl derselben sin& Die zu ~esem Beweise be- 
nutz~en Methoden reichen jedoch nicht aus, wenn es sich um den 
Nachweis des entsprechenden Satzes ffir Formen yon mehr Ver~uder- 
lichen handelt, oder wenn die Grundformen mehrere Relhen yon Ver- 
~uderlichen ent~alten, welche theilweise verschiedenen linearen Trans- 

*) YgL G. Salmon, Algebra tier linearen Transformat~onen, Vorleaung 22 
und 23, sowie den bezfiglichen Litt~ratmrnachweis. 

~) Vgl. Vorlesungen fiber Invarianteutheorie2 Bd. II, S. 231, Andere Beweise 
abel gegeben worden yon F. Mer~ens in Crelle's Journal Bd. t00, S. 223 und 
yore V e r f a s s e r  in d~n Math. Ann. Bd. ~ ,  S. 223. 

Mathematlsche Annalem XXXVL ~ 
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formafionen un~rliegen. Es sollen im Folffenden die Mitf~l dargeleg~ 
werden, deren es zur Erledigung tier eben. gekennzeiehneten allge- 
meineren Fragen bedarf. 

Um in dem Beweise die wesentliehen Gedanken mSgliehs~ klar 
hervor~reten zu lassen, betrachten wit zun~ehst den einfaehen Fall einer 
einzigen bin~ren Grundform [ mi~ nut einer Ver~nderliehenreihe xt, x2. 

Naeh einem in Absctmitt I bewiesenen Satze t~4sst sieh aus 
einem jeden beliebig gegebenen Formensysteme stets eine endliche 
Zahl yon Formen derar~ ausw~len, dass jede andere Form des Sysf~ms 
dnrch lineare Combination jener ausgew~t~en Formen erhalten werden 
kann. Wir be~raehten insbesondere das System aller Invarianten der 
bin~ren Grundform f u n d  es muss dann naeh dem angefiihr~n Satze 
nothwendigerweise eine endliehe Zahl m yon Invarianten i 1 , i ~ , . . . ,  i,~ 
geben yon der Art, dass eine jede andere Invariante i der Grundform 
f in der Gestalt 
(38) i-=- ~ i ,  + A ~  + - . .  + A~ 
ausgedriiekt werden kann, wo A~, A 2 t . . . ,  ~ ganze homogene Fune- 
tionen der Coefficien~en der Grundform f sind. Doeh kann dieses 
Ergebniss offenbar aueh diree~ aus Theorem i in Absehnitt I abgeleitet 
werden. Um dies kurz zu zeigen, w~I~len wit zun~iehs* naeh Willk~ir 
ans der Gesamm~eit tier Invarianten der gegebenen Grundform f eine 
Invariante aus und bezeichnen dieselbe mi~ i~; ferner mSge i 2 eine 
Invariante der Grundform f sein, welehe nicht einem P~oduete yon 
der Gestalt At i~ gleieh ist, wo At eine ganze homogene Function der 
Coeffieienten der Grundform f ist; i 3 sei nun eine Invariante, welehe 
sieh nieh~ in die Gesf~l~ Ati~ + A~i2 bringen I~sst, wo At und A~ 
wiederum gauze homogene Func~ionen der Coeffieienten der Grund- 
form f sin& Enkcpre~hend sei i~ eine Invariante der Grundform, 
welehe sieh nieht in die Ges~l~ A~it + ~ i 2  + A~i 3 bringen l~ss~ 
und wenn wir in dieser Weise forffahren, so gewinnen wir eine Formen- 
reihe it, i2, i ~ , . . . ,  in welcher keine Form dureh lineare Combination 
der vorhergehenden Formen erhalten werden kaun. Aus Theoren~ I 
in Abschni~ I folg~, dass eine solehe Reihe nothwendig im Endliehen 
abbricht. Bezeichnen wit die letzte Form jener Reihe mi t /~ ,  so ist 
eine jede Invariante der gegebenen Grundform f gleich einer linearen 
Combination tier m Invarianten is, i ~ , . . . , / ~ .  Das so gewonnene 
Ergebniss bezeiehnet den e r s t en  Schritt, welcher zum Beweise der 
Eadlickkeit des vollen Invariant~nsys/mms efforderlieh is t  

Der zwei/~e Schritt5 besteht darin, zu zeigen, dass in dem Aus- 
~neke ~ i ~  ~ ~ i ~  -~ :-- ~ A ~  die Funct~ionen A t, ~ ~ . . . ,  A~ stets 
dure~ I n v a r i a n ~  J~, J ~ . . . ,  ~ e~setzt werden kSnnen, ohne, dass 
~r dabei ~ter Werf3a i jenes Ausdrue.~ks ~der~. Dieser zweif~ Schrit~ 
l~s~ sich in dem bier zun:~cha~ be~raehtef~n ]~:alte einer b i t t e n  Grunel, 
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form mit nur einer Ver~inderlichenreihe in besonders einfacher Weise 
ausftihren, wenn wir uns des folgenden in der Inauguraldissertation*) 
des Verfassers b~wiesenen Satzes bedienen: 

Jede homogene und isobare (d, h. nut aus Gliedern yon dem 
nfimlichen Gewichte bestehende) Function der Coefficienten einer 
binRren Form 

vom Grade r 
nr 

P ~  2 

worin 

a 0 x~ + ~ )  a, x~ -~ x~ + - - -  -{- a~x~ 

in den Coefficienten a0, at ,  . . . ,  a~ und yore Gewic~e 

geht naeh Anwendung des Differentiationsprocesses 

AD A~D ~ A~D s 
[ ] ~--- 1 ,:2' -{- ~'~' ~'4---T "{- ' ' "  

~--- I ~:~: + ~! ~.~ s.,4~ + " " "' 

D ~  a 0 - ~ -  {- 2 a 1 ~ -  ~- 3 a 2 ~ - ~ s + . . .  

~--- n a  1 ~ -{- (n--1)a~ ~ -{- ( n - - 2 ) a  a - ~  + - . .  

zu setzen is~, in eine Invariante jener Grundform fiber. 
Wit bezeichnen nun die Gewichte der Invarian~en i~ it ,  i 2 , . . . ,  i~ 

beziehungsweise mit 2~ Pl~ P2 , - . . ~ /~ , ,  und fassen ferner allgemein 
unter der Bezeichnung ~ ,  alle diejenigen Glieder des Ausdruckes A, 
zusamme~, welche yore G e w i d h t e p - - ~ ,  sin& Da in der Formel (38) 
auf der linken Sei~e nut Glieder yore Gewichte p vorhanden sind~ so 
diirfen wit auf der rechten Sei~e der n~mlichen Formel alte Glieder 
der Producte A,/8 unterdrficken, deren Gewichte kteiner oder grSsser 
als $ sind~ und wir erhal~en dad~rch fiir i den Ausdrack 

(39) i = / ~ , / ,  + B2i 2 + . . .  + _B~/~. 
wo Bt ,  B 2 , . .  ,,-B,~ eben jene homogenen und isobaren Functionen 
der Coefllcien~en der Grundform sind. Beach~en wir nun, dass eine 
Invaxianh~ bei Anwendtmg des Differentiationsproeesses 1) sowie bei 
hnwendung des Differentiationsprocesses A ident~sch verschwi~de~ und 
dass die homogenen und isobaxea Funetionen ~B, dem obigea Satze 
zufolge bei Anw~endang des Differentiationsprocesses [ ] in gewisse Ia- 
varia~en J ,  der biniiren Grundform f tibergehen, so folg~ 

= i , 

*) Uebex die invarianten Eigeasehaften speeietter b'm:_arer Formen, imsheson, 
dere tier K~ageI~anctionen. K{tnigsbergS, Pr. 18i~5~ sowie ~ Uober eine~ Dazsteiltmgs- 
weiso der invarianten Gebilde im bin~ren Formengebieto, Math, An-~. Bd, a~)(~. 15. 

a4* 



524 D~v~ S~.~. 

und, wenn wir auf jedes Glied in (39) den Process [ ] anwenden, so 
entsteht die Gleichung 

i = J t i t  + ~T2i2 + ' ' "  + Jmia. 

Die Invarianten J l ,  J'2,- -., Jm sind s~immtlich yon niederem Grade 
in den Coefficienten der Grundform als die Invariante i and indem 
wir nun diese Invarianten J1, J2, . . . ,  J~ der n~mlichen Behandlung 
unterwerfen, wie vorhin die Invariante i,  erhalten wit schliesslich eine 
-gauze und rationale Darstellung der Invariante i mit Hfilfe der m 
Invarianten il, is, �9 �9 ira. Die let~zteren m Invarianten bilden daher 
das volle System der Invarianten fiir die vorgelegte bin~re Grund- 
form f. 

Der zweite Schritt in diesem Beweise bestand darin, dass wir 
zeigten, wie in dem ursprfinglichen Ausdrucke (38) ffir i die Func- 
tionen At ,  . A s , . . . ,  Am selber dutch Invarianten zu ersetzen sind. 
Wenn es sich nun um Grundformen yon mehreren Ver~nderlichen 
handelt, so kann dieser zweite Schritt nicht genau in der n~imlichen 
Weise wie vorhin ausgefiihrt werden, well diejenigen SKtze noeh nicht 
bekannt sind, welehe in der Invariantentheorie tier Formen mit mehr 
Ver~nderlichen dem vorhin ffir das binKre Formengebiet ausgesprochenen 
Satze entsprechen. Aber in jenem allgemeineren Falte leistet den 
gleichen Dienst ein Satz, welcher im wesentlichen mit einem yon 
P. Gordan*)  und F. Mertens**)  bewiesenen Satze fibereinstimmt 
and far tern~re Formen, wie fotgt, lautet: 

Es sei ein System yon tern~ren Grundformen f ( i ) f ( 2 ) , . . . ,  f(~) 
mit den Ver~mderlichen xl, x2, x 3 vorgel0gt; die Formen dieses Systems 
mSgen vermittelst der linearen Substitution der Ver~nderliehen 

x~ ~-- ally I + a12y 2 + a~3y3, I all a~ a~3 
(40) x: ~ a2ty i "4- a~2Y2 + a2aYs, a -~- I' a2t a2~- a23 

x3 --~ astYl + aa~Y2 + as~Ya, ] aa~ aa~ ass 

iibergehen beziehungsweise in f2~), f (~ ) , . . . ,  g~). Es sei ferner F(f~) 
irgend ei~e ganze Function der Coefficienten dieser transformirten 
Formen fa 1), ~ ) ~ . . . ,  ~ ) ,  we]che in den Coefficienten jeder einzelnen 
Form homogen ist. Multipliciren wit diese Fune~on F(fa) mit a~, we 
a die Substitutionsdeterminante und q eine beliebige nicht negative 
gauze ZahI bedeutet, und wenden wit dann auf das Product aqF(f~) 
den Differenfiationsprocess 

*) Vorlesungen fiber Invariantentheorie, Bd. II, w 9; vgI. auch A. Clebsch,  
Ueber ~ymbotische Darstelhmg atgebraischer Formen, Cretle's" Journal Bd. 59. 

~ )  Ueber i n v a r : ~  Gebflde ~ern~rer Formen~ Sitzungsb. der kais. Akad. 
W i ~  zu Wien. B~ 9~. 
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Qa~---+ ~a~i~a~a++ ~al~a~<~a+a "+ ~ a ~ s O a ~ a  u - -  ~a+aOa~Oaaa 

so oft an, bis sich ein yon d+en Substitutionseoefficienten art , aie , . . . ,  aaa 

fl'eier Ausdruck ergiebt, so ist der so entstehende Ausdruek eine In- 
variante des Formellsystems fit), f{~)~..- ,  f(~). 

Dieser Sa~z folg~ tmmittelbar aus der Eigenschaft der Unver~der- 
lichkeit der Invarianten bei linearer Transformation. Um dies zu 
zeigen, denken wit uns die Grundformen f(~), f{s),. , ' . ,  f t )  in den Yer- 
~inderlichen yi, Y2, Y~ geschrieben und weaden dann auf die letzteren 
Ver~nderlichen die lineare Transformation 

(41) y,~ ~-- b2lzt + b.:+~z2 "-{- b23Z3, b - -  

all .  

weise in ~'),  ~ ) , . . . ,  f~) iibergehen. 
linearen Substitutionen (40) und (41) 
stitution 

(42) x~ ---- c2~zt + c~2z2 + c~z~, 

b~ b~ b~ 

b2l b22 b23 
b3l b32 b33 

Hierdurch mSgen die Grundformen f(~), f ( s ) , . . . ,  f(~) beziehungs- 
Endlich setzen wir die beiden 

zusammen zu der linearen Sub- 

C 

ell  C12 

c2t e~ 

C'31. C32 

C13 
c ~  ~-- a b  , 

c~,:+ 

wo cll , cI~ , . . . ,  c3s die bekannten bilinearen Verbindungen tier Sub- 
stitutionscoefllcienten art, al2, �9 �9 -, a33 und bl~, h i 2 , . . . ,  b33 sind. D i e  

Grundformen f(t), f(~) . . . ,  f(~) mSgen bei Anwendung der ztmammen- 
gesetzten Substitution (42) in f(l), ~ )  . . . ,  ~ )  tibergehen. Zu der Sub- 
s t i tu t ion  (41) gehSrt der Differentiationsprocess 

~s b+ 

uad zu der zusammengesetzten Substitution (42) geh5rt der Differen- 
tiationsprocess 

Bezeiehnen wit mit p die ZahI, weJc~e a~giel~, nach wie viet- 
matigex Anwaudung yon ~ ,  tier Ausdruck aqF(f , )  yon den Sdbstiiu~ioas- 
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eoefiieienten a n ,  a 1 2 , . . . ,  aa3 frei wird, so besteht unsere Aufgabe 
darin, zu zeigen, dass der Ausdruek 

ein Invaxiante der Gnmdformen fo), f(~), . . . ,  f(~ ist. Da der Aus- 
druek reehier Hand yon den Substitutionscoeffieienten a~,  a te , . . . ,  aaz 
frei sein soll, so is~ aueh 

J( f )  = n~ {bq 17 (5) }.  

In dieser Formel setzen wir fiir die Coefiicienten der Formen f(~), f(~),...,f(~) 
die entsprechenden Coeffieienten der h~msformirten Formen f,(~), f~(~), 
. . . ,  fa(~) ein. Dadurch gehen die Coefficienten der Formen fao), fa(~), 
...,/~(~) in die Coefficienten der Formen f~o), f~(~), . . . ,  f~q,) tiber und 
wir erhalten 

oder 

(43) J ( f o )  - -  

Der Ausdruck cqF(f~) h~ngt yon den Coefiicienten der Grundformen 
f0), f ( ~ , . . . ,  f(~) und yon den Subsfi~afionscoefficienten all,  a I ~,.. . ,  a.~ 3, 
bit, b12,. . . ,b~ ab; er enthi~lt jedoch diese Substitutionscoefiicienten 
lediglich in den bilinearen Verbindungen c1~, ct~, . . . ,  c~. Es gilt nun 
ffir eine jede Function G dieser bilinearen Verbindungen cn, c~ , . . . ,  ~ 
wie aus dem Multiplicationssatze der Determinanten leicht erkann~ 
wird, die Beziehtmg 

QbG ~--- aQoG 

und dutch ~maIige Anwendung derselben erhalten wir 

(44) Q~ {cqF(fo)} ~- aP QZ {cqF (/~)}. 

Es ist nun andererseits 

P(fo)} 
und fo]glich wegen (43) und (44) 

J(f ) = a J(f). 

Diese Formel zeig~, class dem Ausdrucke J ( f )  die Invarianteneigen- 
schaf~ zukommk 

Der eben bewiesene ~atz ermSgtich~ die Aufstmllung voa beliebig 
vielen Invarianten des vorgeleg~en Formensystems. Um zu zeigen, 
dass durch dieses Verfahren s~mmfliche Invarianten .gefaaden werden 
k'oanen, beta~achi~n wit den Ausdruck Q~ a~. I~as Differentiations- 
symbol Q, geht aus tier D~erminan~ a hervor, wean wir allgemein 
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in jedem Gliede -{- all.a22,a33, der letzf~ren fiir das Product alra=.aaa, 
~ 3  ~ t den Differentialquotienten ~a~.~a~. ~a m, einsetzen, wo 1", 2, 3" die 

Zahlen 1, 2, 3 in irgend einer Reihenfolge bedeuten. Entspreehend 
erhalten wir das Differentiationssymbol !2~ aus a2, wenn wir in dem 
entwickelten Ausdruck ffir a2 aUgemein an Stelle yon a~,,n~,, . a ~  

11 ~ 1 2  " " 

den Differentialquotienten ~3~ einsetzen, wo Pil, Pi ~,-.-, P33 

gewisse Exponenten bedeuten, deren Summe gleich 3p ist. Hieraus 
fol~ insbesondere, dass das Vorzeichen yon a~,, a~,'-.., a ~  in as  iiber- 

~3p 
einstimm~ mit dem Vorzeichen yon ~a~'* ~a~"1~ . .  ~a~  in ~ ;  wenden 

wit daher ~ auf a~ an, so ergiebt sich eine Summe yon lauter 
10ositiven Zahlen: d. h. Q~a2 ist eine yon N u l l  v e r s c h i e d e n e  
Zahl*); diese Zahl werde mit 2~r~ bezeichnet. 

Es sei nun J ( f )  eine beliebig vorgelegte Invariante, und dieselbe 
~indere sich bei der Transformation urn die pt~ Potenz der Substitutions- 
determinante. Die Relation 

' " = J(f) 

zeigt dann, wie die Invariante J ( f )  durch das angegebene Verfahren 
erhalten wird und somit folg~ die Richtigkeit der obigen Behauptung. 

Auf diese Betraehtungen grtindet sieh der erstrebte Beweis ftir 
die Endliehkei~ des vollen Invariantensys~ems im tern~ren Formen- 
gebiete. Der e r s t e  zu diesem Beweise ffihrende Sehrit~ ist der n~un- 
liehe, wie vorhin im Falle der bin~ren Formen und wir nehmen dem- 
gemass wiederum an, es seien aus der Gesammtheit der Invarianten 
der Grundformen die m Invarianten i i , i . , , . . . ,  i,~ 
derart ausgew~ihlt~ dass eine jede andere Invariante J jener Grund- 
formen in der Gestalt 

(45) i = A~ii "4- A.>i2 "4- ' ' ' -4-  A~i,~ 
ausgedriick~ werden kann~ wo AI,  A ~ , . . . ,  A,,, ganze homogene Func- 
tionen der Coeffieienten tier Grundformen sin& 

Der z w e i t e  Schritt besteht darin, zu zeigen, dass in dem Ausdrucke 
Al i  1 ~ A2i~ -4 - . . .  q- A,~i,, die Funetionen A 1 ~ A~, . . . ~ A~ sf~e~ 
durch Invarianten ersetzt werden kSnnen, ohne dass sieh dabei tier 
W e r ~  i des Ausdruckes ~nderr Zuniichst beaehten wit ,  class eine 
Iuvarian~e ihrer Definition nach in den Coefficienten einer jeden einzelnen 
Grundform homogen is~. Es seien die Invarianten i ,  il~ i ~ . . . , / ~  ~'n 

*) VgL A. Clebsch, h c. S. 12, wo die !etzte~e Thatsache hn Wese~fliehen 
auf dem n~mlichen Wege bewiesen worden ist. 
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den Coefficienten der ersten Grundform f(1) beziehungsweise yore Grade 
r, r l ,  r~, . . . ,  r~. Da die liake Seite in Formel (45) demnach nur 
Glieder yore Grade r in den Coefilcienten yon f(~) enth~lt, so diixfen 
wir auf der rechten Seite der n~mlichen Formel allgemein in den 
Funetionen A, alle diejenigen Glieder unterdrticken, deren Grad in 
den Coefficienten yon fo) kleiner oder grSsser als r -  r~ ist. Wenn 
wit in gleicher Weise die Grade in Bezug auf die Coeffieien%en der 
iibrigen Grundformen reduciren, so gelangen wir schliesslich zu <ler 
Gleichung 

wo die Functionen ~ ,  ~2, �9 �9 - , / ~  in den Coefficienten jeder einzelnen 
Grundform homogen sind. In dieser Gleichung setzen wit an Stelle 
der Coefficienten der Grandformen f(1), f(~), . . . ,  f(~) die entsprechen- 
den Coefficienten der transformir~en Grundformen f~(1), f~(~) , . . . ,  f~(~ 
oin und benutzen dann die Invarianteneigenschaft yon i, i , ,  i ~ , . . . ,  i~,; 
dadurch ergieb~ sich 

+ + . . .  + 

wo iU, P~ die Gewichte der Invarianten i, i~ und wo 2~(f~) die ent- 
spreechenden Functionen der Coefficienten der transformirten Grand- 
formen f,(~), f,c~),. - . ,  f~(~) sin& Wenddn wit auf die erhaltene Relation 
p real das Differentiationssymbol Q, an, so folgt 

+ + . .  

+ 

und, wenn wir dutch die yon Null verschiedene Zahl ~ ~-Q2 {a ~} 
auf beiden Seiten dividiren~ entsteh~ eine Gleichung yon der Gestalt 

wo unserem vorhin bewiesenen Sa~ze zufolge die Ausdriicke 

1 J,  ~- -~ -  Q2 {a'~ B, (f~)} ( s~- l ,  2 , . . . , m )  

Invarianten der vorgelegten Grundformen f a )  f ( ~ ) . . - ,  f(~) sin& 
UnMrwerfen wit diese Invarianten J~, J : , . . . ,  J~ der n~mlichen 

Behandlung, wie vorhin die Invariante i,  so folgt, dass auch diese 
Invarianten dutch lineare Combination aus i~, / 2 , . . . ,  i., erhalten 
werden kSnnen, Wobei die als Coefficienten in der linearen Combination 
anftretenden Funetionen wiederum Invar~anten sind. Da sich abet bei 
jedesmaliger Wiederho!ung' dieses Verfahrens die Gewichte der dar- 
z~astellenden Invarianten vermindern, so bricht da~ ~rerfahren ab, and 
wir erhalten sehlies~eh eine gauze und rationale Darstellung der In- 
va~antm i mi t  Hiilfe der m Invarianten i~, i s , . . .  , i~. Damit ist~ der 
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erstrebte Beweis fiir tern~re Grundformen mit~ eiaer Ver~uderlichen- 
reihe erbracht. 

Abet es geschah lediglich im Interesse einer kiirzeren Dar- 
stellung, wenn wit uns im Vorhergehenden auf diesen Fall beschr"ankten 
und wit sehen nachtriiglich leicht ein, dass unsere Schllisse sich ohae 
Weiteres auf den Fall yon Grundformen mit n Ver~nderlichen fiber- 
tragen lassen. An Stelle des vorhin benutzten Differentiationsprocesses 
tritt dann der allgemeine Differentiationsprocess 

wo a ~ ,  a12,. � 9  a~,, die n 2 Coefficienten der linearen Substitution der 
n Ver~nderlichen bedeuten. 

Enthalten ferner die Grundformen mehrere Ver~nderlichenreihen, 
welche siimmtlich der niimlichen linearen Tmnsformati~m unterlieg'en, 
so bleibt das obige Verfahren ebenfalls genau das gleiche und selbst 
in dem Falls, wo mehrere VeKinderlichenreihen in den Grundformen 
auftreten, welche theilweise verschiedenen linearen Transformationen 
unterworfen sind, bedarf es nur eines kurzen Hinweises, in welcher 
Art die obige Schlussweise zu verallgemeinern ist. 

Es sei ein System yon Grundformen fl~), f i e ) , , . . . ,  f(~) mit ether 
tern~ren Veriinderlichenreihe x l ,  x ~ , x  3 und mit einer bin~iren VeKinder- 
lichenreihe ~l, ~.~ vorgelegt, welche gleichzeitig und zwar mittelst der 
Formeln 

xl  - -  anY1 "~ a12Y~ "Jr" alaYa, all at2 a13 

x ,  ~ a21y I -4- a22y., " -4- a~ay~, a ~ a21 a2~. a2a 

x3 ~ aaY~ d-  a3,.Y2 ~ a3aYa, a a  a32 aas 

zu transformiren sind. ~ach Ausffihrung dieser Transformation gehen 
die Formen f(~), f ( ~ ) , . . . ,  f(~) fiber in die "Formen fa(~ f ( ~ , . . . ,  f (~,  
deren Coefficienten sowohl die Substitationscoefficienten a n , a ~ , . . . ,  a~a 
ats auch die Substitutionscoefficienten a n ,  a ~ ,  % ~  a ~  enthalten. 
Unter einer Invariante in Bezug auf diese Transformationen verstehen 
wir dann einen in den Coefficienten jeder einzelneffGrundform homogenen 
Ausdruek~ wel~er  s[eh nut um Potenzen der Substitafionsdeterminanten 
a und ~ iinder~, wean wit in demselben fiir die Coefficienten der 
Grundformen f(~), f (~ ) , . . . ,  f(~) die en~sprechenden Coefficienten der 
transformirten Grundformen f(~, f~)~, . . . ,  f(~) einsetzen. Unserem oben 
bewiesenen Satze entsprieht d~nn im vorliegenden F~le  tier folgende 
Satz: 
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~Es set /?(fa,) irgend eine ganze Function der Coefficienten der 
transformirten Formen [ ~ ,  f ( , ~ , . . . ,  f (~,  welche in den Coefficienten 
jeder einzelnen Form homogen ist. Multipliciren wir diese Function 

wo q und ~ beliebige nicht negative ganze Z~hlen 
wir dann auf das Product aq a ~/7'(f,=) jedeu der 

/~(f~=) mit; a~ a", 
sind und wenden 
beiden Proe~sse 

Oa~aOa~Oa~z + Oa~zOa~Oa~t ~ OatzOaztOa~a 

"3U ~a~Oa~t~a.a~ Oa~aOa~zOaa~ 
und 

so oft an, bis sich ein yon den Substitutionscoefficienten al~, al2 ,. . . ,  a33, 
at1 , %~, al2 , r freier Ausdruck ergiebt, so ist der entstehende Aus- 
druck eine Invariante der Grundformen f(1), f (~) , . . - ,  f(~) in dem ver- 
langten Sinne. 

Der Beweis dieses Satzes entsprichi vollkommen dem vorhin flit 
Formen mit einer tern~ren Veriinderlichenreihe ausftihrlich dargelegten 
Beweise und ebenso erkennt man ohne Schwierigkeit, dass auch um- 
gekehrt jede Invari~nte erhalten werden kann, indem man auf eine 
geeignet gew~Llte Function der Coefficienten der transformirten Formen 
die Differentiationsprocesse Q, und Q= in der durch den obigen Satz 
vorgeschriebenen Weise anwendet~ 

Um nun die Endlichkeit des vollen Systems der in Rede stehenden 
Invarianten darzuthun, nehmeu wit wiederum an, es seien die m !n- 
varianten /1, i 2 , . . . ,  im derar~ ausgew~hlt, class jede andere Invariante 
i in der Gestalt 

ausgedriick~ werden kann, wo A l, A2, . . . ,  Am ganze homogene Func- 
tionen der Coefficienten der Grundformen sind. Aus dieser Relation 
erhalten wit auf dem n~mlichen Wege wie vorhin eine Relation yon 
der Gestalt 

+ - - -  + 
wo die Func~ionen/~1,/~2, " - -, B~,, in den Coefficienten jeder einze]nen 
Grundform homogen sind. Setzen wit in dieser Gleichung an S~lle de1: 
Coeflicienten tier Grundformen f(i}, f(m,...,f(~) die entsprechendewCoeffi- 
cienten der transformirten Grundformen f~(~), f,(~), . . . ,  fa(~) eib, so folgt 

Die Anwencbang des Differen~ah'onspr6cesses Q ~  und die Division 
doxch die yon Null versehiedene Zahl 
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Fall iiber~raggn l~sst, 
den n~mlichen oder 
Ver~nderlichenreihen 
Sa~z aus: 

F~ihr~ sehliessh'ch zu einer Gleichung yon der Gesf~l~ 

wo dry, J~, . . . ,  Jm Invarianten der Grundformen in dem v~er]angten 
Sinne sind. Diese Formel ffihr~ nach wiederholter Anwendung "zu einer 
ganzen rationalen DarsCellung der Invariante ~ mit Hfilfe der m ]n- 
varianten i~, i~, . . . ,  i~. 

Auch in dem eben behandelten Falle sehen wir nach~gl ich  leicht 
ein, dass die angewandte Schlussweise sich ohne Weiteres auf den 

wo die gegebenen Grundformen beliebig viele, 
versch~edenen Transformatdonen unterliegende 

en~hM~. Wit  sprechen daher den allgemeinen 

T h e or e m V. Ist dn System vo~ Grundforme~ mit bdiebig vielen 
Ver~nderZichenreihen gegeben, welche in vorgeschriebener Weise den 
niim~ichen oder verschiedenen linearen Transformationen unterliegen, so 
giebt es fiir dasselbe stets eine endl iche Zahl yon ganzen und ratis 
Invarianten, dutch wdche~sich jede andere ganze und rationale Invariante 
in ganzer und rationaler Weise ausdriicken lgsst. 

Was die sogenann~en Covarian~n und Combinanten yon Formeno 
systemen bestrifft, so fallen diese Bildangen s~mm~ieh als specietle 
F~lle unter den oben behandelteu Begriff der Invariante. Ffir diese 
invarianteu Bildungen folgt also ebenfalls aus Theorem V die End- 
lichkeit der vollen Systeme. Das Gleiche gilt yon den sogenannten 
Contravarian~en und allen auderen invarianten Bildungen, bei weIchen 
gewisse aus mehreren l~eihen yon Ver'~nderlichen zusammengese~zf~ 
Determinauten ihrerseits als Ver~nderliche eintreten*). Diese Bildungen 
kann man dadurch unter den oben zu Grunde geleg~en Invar]anten- 
begriff fassen, dass man geeignete Formen "mit mehreren Ver~mder- 
lichenreihen zu den schon vorhandenen Grundformen hinzuffig~. Wenn 
�9 U es geschehen is~, lassen sich die bisherigen Ueber]egungen umnittelbar 
iibertragen und es folg~ daher insbesondere auch ffir alle solchen in- 
varianten Bildungen die Eudlichkeit des voIlen Sysf~ms. Als Beispiel 
fiir diesen Fall diene ein S~stem yon ~ Grundformeu~ in welchen die 
6 Liniencoordinaten pik die Ver~nderlichen sin& 

Anders verh~il~ es sich jedoch, sobald wir die Verallgemeinerung 
des Invariantenbegriffes in einer Richtung vornehmen, wie sie dutch 
die Untersuchungen yon P. K 1 e i n ~ )  und S. L i e***) bezeichnet~ is~. 

*) VgL E. Study, Ueber den Begriif der Invarianf~ algebraiacher Formen, 
Berich~ tier kgl. s]~chs. Ge~. der Wiss. 1887. S. 142. 

**) Vgl. die Programmschrff~: ,,Vergleichende Be~ach~ungen fiber neuere 
geomehfsche Forschungen." Erlangen 1872. 

***) Vgl. die Vorrede des Werkes: ,Theorie tier Tr~aforfnationsgmppen2' 
Leil~g 1888. 
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Bisher niimlieh hatten wir die Invariante definirt als eine ganze 
homogene Function der Coeffieienten der Grundformen, welche gegen- 
fiber a l len  linearen Transforma~ionen der VerRnderliehen die In- 
varianteneigenschaft besitzt. Wit wiihlen nunmehr, jener allgemeineren 
Begriffsbildung folgend, eine besfimmte Untergruppe der allgemeinen 
Gruppe der linearen Transformationen aus und fragen nach denjenigen 
ganzen homogenen Fnnctionen der Coeffieienten der Grundformen, 
denen nut mit R~icksieht auf die Substitutionen der ausgew~ihlten 
Un~ergruppe die Iavarianteneigenschaft zukommt. Obwohl unter diesen 
Invarianten offenbar alle Invarianten im fr~iheren Sinne enthalf~n sind, 
so fotg~ doeh aus unseren bisherigen SR~zen tiber die Endhchkeit tier 
volten Invariantensysteme noch nieht, class aueh unter den Invarianten 
im erweiterten Sinne sich jederzeit eine endliche Anzahl auswiihlen 
l~sst, durch welche jede andere lnvariante tier nKmlichen Art ganz 
und rational ausgedrfiek2 werden kann. 

Die bisherigen Entwickelungen und Ergebnisse lassen sieh auf 
die Theorie tier Invarianten in dem erweiterten Sinne allemal dann 
unmittelbar ~ber~ragen, wen n die Coefficienten der die Gruppe bestim- 
menden Subs~itutionen ganze und rationale Funetionen einer gewissen 
Anzahl yon Parametern sind derar~, dass dutch Zusammensetzung 
zweier beliebigen Substitutionen tier Gruppe eine Substitution entsfeht, 
deren Parameter bilineare Functionen der Parameter der beiden 
ursprfinglieh ausgewRhlten Substitutionen sind und wenn es zugleieh 
einen Differen~iationsprocess giebt~ welcher sich in entsprechender 
Weise zur Erzeugung tier zur vorgeleg~en Gruppe gehSrigen Invarian- 
ten verwenden t~st,  wie der Differentiationsprocess ~2 ira Falle der 
zur allgemeinen linearen Gruppe gehSrigen Invarianten. Far solche 
Substituf~ionengruppen ergiebt sich stets dureh unser Schlussverfahren 
die Ene]lichkeit des zur Gruppe gehSrigen Invariantensystems. 

Um kurz zu zeigen, wie der Beweis in solchen F~llen zu f~ihren 
is~, be~rachten wir die Gruppe der terniiren or~hogonalen Substitutionen 
d. h. die Gruppe aller derjenigen linearen Substitutionen yon drei 
homogenen YerRnderlichen, bei deren Ausfahrung die Summe tier Quadrate 
der Ver~nderlichen ungeRnder~ bleibt. Die Transformafionsformeln f~ir 
diese Subs~itutionen sind bekanntlich 

x 2 ~  

x3-~- 2 

(al 2"4- a 2 2 -  a32 - a42)Yl - -  

2 ( a~ a3-- a2 a4) Yl "4- 

(al a4 .-it-- aeas)y ~ "i t- 

2 (al aa -.~ a2a4) y2 
2 (ai a4--  a~ a3) Ya , 

(at ~ - a2~-- aa2.-l-- aa~) y2 
2(a~ a2--J-aaa4) ya, 

2 ( al a2 - -  as a~ ) Y2 
+ 



Ueber die Theorie tier algebraischen Formen. 533 

wo a~, a2, a3, a4 die 4 homogenen Parameter der 8ubstitutionengrnppe 
bedeuten. Die Gruppeneigensehaft dieser Substitutionen bes~g~  sieh 
leieht, wenn man in den eben angegebenen Formeln an Stelle tier 
Pa-~ameter as, a2, a3, a4 andere Griissen eintr~gt und die so erhaltene 
Substitution mit der urspr~inglichen zusammensetzt. Was die zu dieser 
Substitutionengruppe gehSrigen Invarianten betrifft, so gilt der folgende 
Satz: 

Wenn man ein System yon ternilren Grundformen vermSge der 
angegebenen Substitutionsformeln linear fransformirt und auf eine 
beliebige homogene Function der Coeffieienten der transfbrmirten 
Grundformen das Differentiationssymbol 

so oft anwendet, bis sich ein yon den Parametern al ,a~ ,  as, a4 frei_er 
Ausdruck ergiebt, so besitzt dieser Ausdruck die Invarianteneigensehaft 
gegenfiber der dureh jene Formeln definirten Substitutionengrappe. 
Das gleiche gilt, wenn jene homogene Function der transformirten 
Coefficienfen noch zavor mit einer beliebigen ganzen Potenz des Aus- 
druckes aj 2 -{- a2 2 + a3 2 -]- a4 2 multiplieirt wird. 

Die Anwendung dieses Sat:zes erm5glicht den gesuchten Beweis 
der Endliehkeit des vollen Invariantensystems, wie man leieht erkennt, 
wenn man die Entwiekelungen des frtiheren Beweises auf den vor- 
liegenden Fall iibertriigt. 

Ein anderes Beispiel liefert diejenige Gruppe, welehe die fotgenden 
quaternKren Substitutionen enth~lt 

xl ~ al a Yt -l- 3a~  a2 y~ + 3al a~ 2 Y3 "Jr" a2 a Y4, 

x~ ~ al~ a3 ~ + (a~: a4 -{-- 2 at a2aa) y~ -{- (2al a2 a4-{- a2: aa)ya -{-- a~2 a4Y4, 

x s ~ alaa2yl -1 t- (2ajaaa4..{-a2aa2)y2 -}.- (ala4~-.~-2a2aaa4)ya .-I- a2a4~Y4, 

x4 - -  aa a Yl -{- 3aa2a4 Y~ -[- 3a3aa 2 Ya."{- a~ a Y4. 

Deuten wir die Ver~mdertichen als homogene Coordinaten der Punk~ 
des Raumes~ so stellen diese FormeIn mit den ver~nderlichen Para- 
metern a~, a2, aa, a 4 alle linearen Transformaf~onen des Raumes dar~ 
bet welchen eine gewisse Raumcur~e dritter Ordnung ange~der~ bleibt. 
Durch die en~sprechenden Betrachtungen wie vorhin folgt aneh ffir 
diesen Fall die Endlichkeil des vollen Invariantensystems. 

Nachdem ffir ein vorgeleg~es System yon Grundformen die In- 
varianten s~immttich aufgestellr worden sind, entsteh~ die weitere Frage 
naeh der gegenseitigen Abhiingigkei~ der Invarianten dieses endtichen 
Systems. Far eine derar~ige Untersuchung dienen wiedermn die 
Theoreme I und HI a!s Grundlage. Wenn wir n~mtich in den dor~ 
auftretenden Formen eine der n homogenen Ver~nderlichen der Einheit 
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gleich setzen, so erkennen wit unmittelbar, dass jene beiden Theoreme 
auch f~r nich~ homogene Func~ionen gfiltig sind und es ist somit 
insbesondere die Anwendung derselben auf die zwischen den Invarianten 
bestehenden Relationen gestattet. Verstehen wir nun in ~blicher Aus- 
drucksweise uniter einer irreduciblen Syzygie eine solche Relation 
zwischen den Invarianten des Grundformensystems, deren linke Seite 
nicht dutch lineare Combination yon Syzygien niederer Grade erhalten 
werden kann, so folg~ aus Theorem I der Satz: 

~ i n  endliches System yon Invarianten besitzt nu t  eine e n d lic h e 
Zahl yon irreduciblen Syzygien. 

Als Beispiel diene das volle Invariantensystem yon 3 bini~ren 
quadratischen Grundformen, welches bekanntlich aus 7 Invarianten 
und 6 Covarianten besteht. Es l~sst sich zeigen, dass es ftir dieses 
Invariantensystem 14 irreducible Syzygien giebt, aus denen jede andere 
Syzygie dutch lineare Combination erhalten werden kann. 

Die Aufstellung des vollen Systems der irreduciblen Syzygien ist 
abet nut der erste Schriti auf dem Wege, welcher gem~ss den oben 
in den Abschnitten I,  III und IV allgemein entwickelten Principien zur 
vollen Erkenntniss der gegenseit.~gen Abh'~ngigkeit der Invarianten 
ffihr~ Denn zwischen den Syzygien ihrerseits bestehen gleichf~dls im 
Allgemeinen lineaxe Relationen, sogenann~e Syzygien zweiter Art, 
derea Coefilcienten Invarianten sind und welche wiederum selber dutch 
lineare Relationen, sogenannte Syzygien drifter Arl, verbunden sind. 
Was die For~se~ung des hiedurch eingeleiteten Verfahrens anbetrifft, 
so muss dasselbe nach einer endlichen Zahl yon Wiederholungen noth- 
wendig abbrechen, wie unser Theorem ]]I lehrt~ wenn man dasselbe in 
der vorhin angedeateten Weise auf nicht homogene Ftmctionen fibertr-~gt. 
Wit gewinnen somi~ den Satz; 

Die Systeme der irreduciblen Syzygien erster Art, zweiter Ar t  u s. f. 
bilden eine Kette abgeleiteter Gleichungssysteme. 1)iese Syzygienkette 
bricht im E n d l i c h e n  ab und zwar giebt es keinenfalls Syzygien yon 
hSherer als der m-~- 1 ~ Ar t ,  wenn m die Zahl der Invarianten des 
volle~ Systems beaeichnet. 

Zur vQllst~mdigen Untersuchung eines Invariantensystems bedarf 
es in jedem besonderen Falle tier Aufstellung der ganzen Kette yon 
Syzygien. Naeh den ErSrterungen des Abschnittes IV sind wir dann in 
der Lage, die linear maabh~gigen Invarianten yon vorgeschriebenen 
Graden anzugeben, und zwar ausgedrfick~ als ganze r~ionale Func- 
t~ionen der Invarianten des vollen Sys~ms. 

K S n i g s b e r g  in Pr. den 15. Februar 1890. 


