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Zur Theorie der algebraischen Gebilde.
(Zweite Note)?).

Von

David Hilbert aus Konigsberg in Pr.
Vorgelegt von Felix Klein.

In einer vor kurzem unter gleichem Titel verdffentlichten Mit-
theilung ist von mir ein Princip entwickelt worden, dessen Kraft
sich vornehmlich da bewihrt hat, wo es auf den Nachweis der
Endlichkeit gewisser Systeme von algebraischen Formen an-
kommt. Aber die Anwendbarkeit desselben ist auf derartige Fra-
gen keineswegs beschrinkt und die vorliegende Note soll zeigen,

1) Vgl. 1888 8. 450 ff.
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96 David Hilbert,

wie der in jemer ersten Mittheilung dargelegte Gesichtspunkt ins-
besondere zu einer einheitlichen und fibersichtlichen Behandlung
der charakteristischen Zahlen (Dimension, Ordnung, Ge-
schlechter, Rang, etc.) eines algebraischen Gebildes fiihrt.

Sind An: 4,,..., 4,, gegebene ganze Funktionen der » ho-
mogenen Variablen #,, ,,..., «,, so besitzt nach Theorem III das
System von ! Gleichungen

4, X +4,X,+..+4, X, =0(s=1,2,..41)
eine endliche Zahl p von Lisungen
Xt= thi Xt= Xcz) e ey X,= X‘p(t= 1,2, . ..m)

von der Eigenschatt, daB jedes andere jenen Gleichungen genii-
gende Funktionensystem sich in die Gestalt
X =YX+ X, ...+ X, (t =1,2...m
bringen liBt, wo ¥, Y,,..., ¥, ebenfalls ganze und homogene
Funktionen jener » Variablen sind. Unter den p Losungssystemen
moge iiberdies keines vorhanden sein, welches bereits aus den iibri-
gen durch lineare Combination erhalten werden kann. Wir be-
trachten nunmehr die Formen X,,, X,;, ..., X,, als bekannt und
bestimmen fiir die Gleichungen :
X, + Y, X, +..+Y,X,=0(@¢=12...,m)
das volle System von Liésungen
Y=Y,Y.=Y,...,Y,=Y,06= L2...,p)
derart, daf jede andere Liosung die Gestalt
Ys = Z1 Y31+Z2Y.va+"'+quq(s = 172’ MR p)
annimmt. Wenden wir dann dasselbe Verfahren auf das Glei-
chungssystem
ZY, +Z, Y, +..+2,Y,=0(6=12...,p)
an, so gilt der folgende fiir unsere weiteren Entwickelungen grund-
legende Satz:

Theorem V. Ist ein Gleichungssystem von der Gestalt
A,1X1 +A,2X,+... +Ame =0 (S = 1,2, cee, Z)
vorgelegt, so fithrt die Aufstellung der Identitdten zwischen den
Losungen desselben zu einem zweiten Gleichungssystem von der-
selben Gestalt; aus diesem abgeleiteten Gleichungssysteme ent-

springt in gleicher Weise ein drittes u.s.f. Das so gekenn-
zeichnete Verfahren erreicht stets ein Knde und
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swar spidtestens nach n-maliger Anwendung, d. h. in
der Reihe jener Grleichungssysteme tritt an st oder bereits an
fritherer Stelle ein Grlelchungssystem auf, welches keine Losung
mehr besitzt.

Der Beweis dieses Theorems ist nicht ohne Miihe. Durch ge-
eignete Behandlung des vorgelegten Gleichungssystems gelingt es
dem abgeleiteten Gleichungssystem eine solche Gestalt zu erthei-
len, daB nur eine beschrinkte Zahl der Losungen dieses abgelei-
teten Gleichungssystems sdmmtliche # Variablen enthilt, wihrend
dagegen alle iibrigen Liosungen von einer jener # Variablen etwa
von z, frei sind. Durch Fortfiilhrung dieser Schlufweise und unter
Benutzung des Theorems II. wird der Fall von » Variablen auf
denjenigen von n—1 Variablen zurtickgefiihrt. Um nun die Rich-
tigkeit des Theorems fiir den Fall » = 2 zu erkennen, legen wir
die Gleichung

A X +4,X,+...+44,X, =0
zu Grunde, wo 4,, 4,,..., 4, gegebene binire Formen von der pter
Ordnung sind. Das volle Losungssystem dieser Gleichung besteht
genau aus m—1 Losungen. Ist némlich irgend ein System von
m Losungen jener Gleichung vorgelegt, so lassen sich offenbar
stets m bindre Formen Y,, ¥,,..., Y, von der Art finden, daB die
Relationen

Y1X31+Y2X35+...+YMXM = O (s = 1’2’.“’m)

identisch erfiillt sind. Bezeichnen wir nun die den Formen X,

X,yoooy X,, gemeinsame Ordnung mit =, und bestimmen einen Li-
nearfaktor von Y, , so lassen sich unter der Voraussetzung
nEnL=S =,

die m Lisungen der gegebenen Gleichung durch lineare Combina-
tion derart umgestalten, da8 jener Linearfaktor in dem fiir die
neuen Liosungen giiltigen Relationensystem iiberall unterdriickt
werden kann. Wird das hiedurch angedeutete Verfahren solange
wiederholt, bissich die Linearfaktoren der Form Y, erschopft haben,
so ergiebt sich schlieflich ein Relationensystem von der Gestalt

X, =X, +a,X,+...40,, X, ,6=12...,m)

sm=1)

WO a,, @,,..., 0, , wiederum bindre Formen sind. In Folge dieses
Ergebnisses ist die mt® Liosung tiberfliissiy und man erkennt so-
mit, daR die Losungen eines vollen Losungssystems der vorgelegten
Gleichung sich stets durch gewisse m—1 Lisungen ersetzen las-
sen, welche durch kein weiteres Relationensystem unter einander

3*
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verkniipft sind d.h.: Bereits das aus der urspriinglichen Gleichung
abgeleitete Gleichungssystem ist ein solches, welches keine Lisung
besitzt. Es bietet keine Schwierigkeit, dieses Ergebnif auf den
Fall mehrerer Gleichungen zu iibertragen, deren Coéfficienten bi-
nire Formen von beliebigen Ordnungen sind. Das vorhin ausge-
sprochene Theorem ist alsdann in der That fiir das bindre For-
mengebiet und damit zugleich allgemein als richtig erkannt.

Zur Erlduterung des Theorems diene das Beispiel der Norm-
curve im vierdimensionalen Raume. Die urspriingliche Gleichung
ist in diesem Fall von der Gestalt

‘91X1+(\°2X2+ e +'1°GX6 = 0,
WO @, Py + -+, ¢, die 6 in der ersten Note angegebenen quadrati-
schen Formen der 5 homogenen Coordinaten bedeuten. Das abge-
leitete Gleichungssystem enthdlt 8 Gleichungen und schon das
dritte aus 3 Gleichungen bestehende Gleichungssystem besitzt keine
Lisung.
Von principieller Bedeutung ist die Behandlung der Gleichung
2, X +u,X,+...+2,X, = 0;

dieselbe giebt ndmlich einen Beleg fiir den Fall, in welchem das
in Rede stehende Verfahren thatsichlich erst nach » maliger An-
wendung ein Ende erreicht.

Um im Folgenden eine kiirzere Ausdrucksweise zu ermogli-
chen und tiberdies leichter an bekannte Anschauungen und geldu-
fige Begriffe ankniipfen zu konnen, nehmen wir an, daf an Stelle
eines Systems von Gleichungen nur eine einzige Gleichung von
der Gestalt

MX+MX,+...+M, X, =0
zu Grunde liege, wo M,, M,, . .., M, gegebene Formen der » ho-
mogenen Variablen z,, ,, . . ., #, mit bestimmten Zahlenco&fficienten
und von beliebigen Ordnungen sind. Wir bestimmen zunichst die
Zahl der linear von einander unabhiingigen Formen M von der
g Ordnung, welche Ausdriicken von der Gestalt
M=MX+MX+.. +M X,
identisch gleich sind. Es ist zu diesem Zwecke nur nothig die

Gesammtzahl der in X, X,, ..., X, auftretenden bei der Darstel-
lung verfiigharen Cogfficienten um die Zahl der von einander un-
abhingigen Formensysteme X,, X,,..., X, zu vermindern, fiir

welche der obige Ausdruck M von der & Ordnung identisch ver-
schwindet. Die letztere Zahl hiingt, wie die Fortsetzung der an-
gedeuteten SchluBweise zeigt, von der Ordnung der in der Reihe
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der abgeleiteten Gleichungssysteme als Coéfficienten auftretenden
Formen ab. Vermindern wir nun die Zahl der iiberhaupt vorhan-
denen linear unabhéngigen Formen der &*» Ordnung um die eben
berechnete Zahl der in obiger Gestalt darstellbaren Formen M, so
ergiebt sich die Zahl der linear von einander unabhingigen Bedin-
gungen, welchen die Coéfficienten einer Form der &t» Ordnung ge-
niigen miissen, damit dieselbe in obige Gestalt gebracht werden
kann. Die auf diese Weise berechnete Zahl wird, falls die Ord-
nung & oberhalb einer bestimmten Grenze liegt, durch eine und
dieselbe ganze Funktion von £ ausgedriickt. Da diese Funktion
x(§) fiir ganzzahlige Argumente nothwendig ganze Zahlen darstel-
len muf, so konnen wir setzen

1O =ntu(})+n@)+ - +0() o<w

wo <§>, (;), ceey (E) die Binomialcoéfficienten und y,, %, ¥,

<+, Xy bestimmte von der Natur der Formen M,, M,, ..., M,
abhingige und daher fiir die gegebene Gleichung charakteristische
ganze Zahlen sind. Der eben angedeutete Beweis fiir die Existenz
der Funktion x(£) beruht, wie man sieht, wesentlich auf Theorem V.
Die folgenden Auseinandersetzungen lehnen an diejenige Be-
zeichnungsweise und Begriffsbestimmung an, welche L. Kronecker
in der von ihm begriindeten und neuerdings systematisch ausge-
bildeten Theorie der Modulsysteme !) anwendet. Doch sei im Vor-
aus bemerkt, daR im Unterschiede zu den von L. Kronecker
behandelten Fragen in unserer Untersuchung die Homogenitdt
der Moduln M,, M,, ..., M, beziiglich der Variablenz,, #, ..., z,
eine wesentliche und nothwendige Voraussetzung bildet. Die bis-
herigen Ergebnisse werden nunmehr, wie folgt, zusammengefalit:
Die Coéfficienten einer Form von einer geniigend
hohen Ordnung ¢ in den #» homogenen Variablen z,
Zy ..., x, miissen genau y(¢) von einander unabhéingige
lineare Bedingungen erfiillen, damit die Form nach
einem gegebenen Modulsystem (M,, M,, ..., M,) con-
gruent Null sei. Die ganze Funktion y(§) heife die
scharakteristische Funktion“ jenes Modulsystems.
Wir wenden diese allgemeinen Betrachtungen zunéchst auf

1) L. Kronecker, Crelle’s Journal, Bd. 92, pag. 70—122, Bd. 93, pag. 365
—3866, Bd. 99, pag: 829—371, Bd. 100, pag. 490—510. Berliner Sitzungsberichte,
1888 pag. 249—258, 263—281, 331—3852, 379—396, 615—648. Vergl. ferner:
R. Dedekind und H. Weber, Crelle’s Journal, Bd. 92, pag. 181—235, sowie
J. Molk, Acta mathematica Bd. 6, pag. 50—165.
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den vorhin ausfiihrlicher besprochenen Fall an, in welchem M,
M, ..., M, simmtlich bindre Formen von der pt» Ordnung sind.
Das volle Losungssystem der Gleichung besteht dann unseren frii-
heren Auseinandersetzungen zufolge aus m—1 von einander unab-
héingigen Losungen und wenn wir die Ordnungen dieser m —1 Lg-
sungen beziiglich mit «,, ~,, ..., =, , bezeichnen, so ergiebt sich
fir die charakteristische Funktion des Modulsystems (M,, M,,

M,) der constante Werth

W =y =p—m—7—.. . —nx,,.
Besitzen nun die Formen M,, M,, ..., M, nicht simmtlich

einen gemeinsamen Theiler, so 1dft sich offenbar jede Form M
von der Ordnung § = 2p—1 in die Gestalt

M=MUMX+MX+...+MX,

bringen und die charakteristische Funktion ist daher nothwendig
Null. Auf diese Weise gewinnen wir den folgenden Satz:

Besitzen die biniren Formen M, M, ..., M, von
der p*® Ordnung nicht simmtlich einen gemeinsamen
Faktor, so besteht das volle Lisungssystem der
Gleichung

MX+MXA+...+M X, =20
jederzeit aus m—1 von einander unabhingigen L&-
sungen von der Eigenschaft, daB die Summe der Ord-
nungen dieser Losungender Zahlp genau gleichkommt.

Diesen Satz hat bereits F. Meyer?) vermuthet und als Po-
stulat bei seinen Untersuchungen iiber reducible Funktionen ver-
wendet.

Was das Beispiel der Normeurve im vierdimensionalen Raume
betrifft, so, ergiebt tibereinstimmend die direkte Ueberlegung sowie
die in der ersten Note an der betreffenden Stelle ausgefiihrte
Rechnung fiir die charakteristische Funktion des Modulsystems
(@4 Pgy + + 5 @) den Werth 4§41,

Das Modulsystem (z,, «,, ..., ,) besitzt offenbar die charak-
teristische Funktion Null und das Gleiche gilt fiir jedes Modulsy-
stem, welches irgend » Formen mit nicht verschwindender Resul-
tante enthilt. Fiir das terndre Formengebiet vergleiche man den
am Schlusse der ersten Note ausgesprochenen Satz.

Man sieht leicht ein, wie die gekennzeichnete Methode sich
fir die Theorie der algebraischen Gebilde verwenden laRt. Ist
beispielsweise im dreidimensionalen Raume eine Curve oder ein

1) Mathematische Annalen, Bd. 30, pag. 88.
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System von Curven und Punkten gegeben, so kann man nach
einem in der ersten Note bewiesenen Satze durch dieses Gebilde
stets eine endliche Zahl von Flichen

M,=0, M,=0, ..., M, =0

solcher Art hindurchlegen, da8 jede andere das Gebilde enthaltende
Fliche durch eine Gleichung von der Gestalt
XM +XM+...+X M =0

ausgedriickt wird. Es ist somit offenbar, daB jedem algebraischen
Gebilde ein Modulsystem (M,, M,, ..., M,) und durch dessen Ver-
mittelung eine bestimmte charakteristische Funktion y(£) zugehort.
Die letztere Funktion giebt dann an, wie viele von einander un-
abhéingige Bedingungen eine Flidche von der oberhalb einer gewis-
sen Grenze liegenden Ordnung & erfiillen muB, damit sie das be-
treffende Gebilde enthalte. So hat die charakteristische Funktion

einer doppelpunktslosen Raumcurve von der Ordnung p und dem
Greschlecht » den Werth?)

26 = 1—p+pk
Entsprechende Thatsachen gelten fiir beliebige algebraische
Gebilde im # dimensionalen Raume. Findet man ndmlich fiir die
charakteristische Funktion eines algebraischen Gebildes den Werth

(€ = X0+X1<i)+x-z(%>+"'+x7<§>7

so ist stets v die Dimension und x, die Ordnung des Gebildes,
wihrend die iibrigen Co&fficienten y,, ¥, - -+, X, mit den von M.
Noether?) definirten und behandelten Geschlechtszahlen des Ge-
bildes in engem Zusammenhange stehen. Inwiefern umgekehrt ein
Modulsystem durch die Gesammtheit der Werthsysteme bestimmt
ist, welche die einzelnen Moduln gleichzeitig zu Null machen, ist
eine Frage, welche erst durch eine systematische und alle mog-
lichen Ausnahmefille umfassende Untersuchung des Noetherschen
Fundamentalsatzes fiir beliebige Dimensionenzahl eine befriedigende
und allgemeingiiltige Beantwortung finden kann.

Wir kehren zur Betrachtung der allgemeinen Modulsysteme
zurtick und stellen einen auf die charakteristische Funktion der-
selben beziiglichen Satz auf. Sind irgend zwei Modulsysteme
M, M, ..., M) und (L, L, ..., L) gegeben, so stelle man
zunichst fiir die Gleichung

1) Vergl. M. Noether, Crelle’s Journal Bd, 93, pag. 295.
2) Mathematische Annalen Bd. 2 und 8,



32 David Hilbert,

MX+MX+... +M, X, =L Y +LY,+.. +L7,
das volle Losungssystem
X=X, X,=X,.., X,
Y=Y, ¥Y,=Y%, ..., T
(=12 ...,k
auf und bilde dann vermége der Formeln
K=MX +MX, +..+4M X, =LY +LY +..+L7Y,
=12 ..,k
das sogenannte ,kleinste enthaltende® Modulsystem (K, K,, ..., K,).
Andererseits erhdlt man durch Zusammenstellung der einzelnen
Moduln der beiden gegebenen Systeme das ,grofte gemeinsame®
Modulsystem )
o, M, ..,M, L, L, ..., L)= (G, &), ... Ga&).

Es 14Bt sich pun allgemein zeigen, daB zwischen den charakteri-
stischen Funktionen y, und y, der beiden gegebenen Modulsysteme
und den charakteristischen Funktionen y, und y, der beiden abge-
leiteten Modulsysteme die einfache Relation

XM+XL = XK+XG

X..,

‘ms

I
|

7]

besteht, d.h.:

Die Summe der charakteristischen Funktionen
zweier beliebiger Modulsysteme ist gleich der Summe
der charakteristischen Funktionen fiir das kleinste
enthaltende und das groBte gemeinsame Modul-
system.

Um die Bedeutung dieses Satzes zu erldutern, wenden wir
denselben auf die Losung einer Aufgabe aus der Theorie der Raum-
curven an. Es mogen zwei Raumcurven ohne Doppelpunkte von
den Ordnungen p,, p, und beziehungsweise von den Geschlechtern
P,y p, den vollsténdigen Durchschnitt zweier Flichen K, = 0,
K, = 0 von der Ordnung %,, k¥, bilden. Die den beiden Raum-
curven eigenen Modulsysteme seien (M,, M,, ..., M,) und (L,
L, ..., L). Das kleinste enthaltende Modulsystem ist offenbar
(K, K,) und das grobte gemeinsame Modulsystem (M, M, ..., M,,
Ly, L, ..., L) wird geometrisch durch diejenigen Punkte darge-
stellt, welche beiden Raumcurven gemeinsam sind. Die Zahl

1) Vergl. betreffs der Begriffshestimmung: L. Kronecker, Crelle’s Journal
Bd. 92, pag. 78 sowie R. Dedekind und H. Weber, Crelle’s Journal Bd. 92,
pag. 197.

»
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dieser Punkte sei g. Die in Betracht kommenden charakteristi-
schen Funktionen sind

A = 1—p, + 1k, rr = —%ksz“'_'%‘kxki'l'2k1!ka+k1kg§;
Yo = 1l—p, + 1k, e = @,

und die Anwendung unseres Theorems ergiebt daher fiir die Zahl
der den beiden Raumcurven gemeinsamen Punkte den Werth

= §kik, + Lk, 5, —2F k,—p,—p, + 2.

In den citirten Untersuchungen tiber Modulsysteme werden
noch eine Reihe weiterer fiir die Theorie der Modulsysteme fun-
damentaler Begriffe erdrtert. Die dort gegebenen Definitionen sind
nach geringfiigigen Modifikationen auch fiir die hier betrachteten
Systeme homogener Moduln giiltig. So heifen bei unserer Auf-
fassung zwei Modulsysteme ,aequivalent“, wenn von einer gewis-
sen Ordoung in den Variablen an eine jede beziiglich des einen
Modulsystems der Null congruente Form auch stets beziiglich des
anderen Modulsystems der Null congruent ist. Zwei aequivalente
Modulsysteme haben daher nothwendig dieselbe charakteristische
Funktion, und im besonderen sind alle Modulsysteme mit der cha-
rakteristischen Funktion Null der Einheit aequivalent.

Zum Schlusse sei noch auf die von Cayley, G. Salmon, S.
Roberts und A. Brill ausgebildete Theorie der sogenannten
beschrédnkten Gleichungssysteme?) hingewiesen, da insbesondere
fiir diesen Zweig der Algebra unser Begriff der charakteristischen
Funktion eine wirksame Fragestellung sowie einen einheitlichen
Gresichtspunkt liefert. Ist beispielsweise eine Raumcurve gegeben
und betrachten wir irgend drei dieselbe enthaltende Flidchen f == 0,
g = 0, A = 0 beziehungsweise von den Ordnungen r, s, ¢, so ist
die Zahl der Schnittpunkte dieser Flichen, welche auferhalb jener
Raunmcurve liegen, offenbar gleich der charakteristischen Funktion
des Modulsystems (f, g, #), vermindert uwm die charakteristische
Funktion der Raumcurve. Diese SchluBweise fithrt in der That
zu einem verallgemeinerungsfdhigen Beweise fiir den bekannten
Satz, wonach die Zahl der durch eine gemeinsame Raumcurve ab-
sorbirten Schnittpunkte jener drei Flidchen gleich w(r+s+¢) —p
ist, wenn p die Ordnung der Raumcurve und p eine andere jener
Raumcurve eigene Constante, den sogenannten Rang derselben, be-
deutet.

1) Vergl. G. Salmon, Algebra der linearen Transformationen, Vorlesung 22
und 23, sowie den beziiglichen Litteraturnachweis.
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Die weitere Aufgabe der im Vorstehenden entwickelten Theorie
besteht nunmehr in der wirklichen Durchfithrung der den oben an-

gedeuteten Anzahlbestimmungen zu Grunde liegenden algebraischen
Processe.

Bemerkung zur Quaternionentheorie.
Von

0. Holder.
Vorgelegt von H. A. Schwarz

Fir die Grundoperationen im Gebiete der reellen und der ge-
wohnlichen complexen, in der Form z + yi enthaltenen Grofen be-
stehen die Gesetze:

a+b=0>0+a
(@+d+ec=10a+®+c¢
1) a.b="b.a
(ab).c = a(be)
(@+8).c = ac+be.

Die umgekehrten Operationen, Subtraction und Division kon-
nen hier iibergangen werden. Das angegebene System ist voll-
stdndig. Bedeuten némlich a,, a,, ...a, ganz willkiirlich ver-
#nderliche Grofen, und bildet man aus diesen unter Hinzunahme
von einigen bestimmt gegebenen reellen GrioBen durch mehrfache
Anwendung der Addition und Multiplication neue GroBen, welche
also Functionen von a,, @, ...a, sind, so ist die fundamentale
Frage die: Unter welcher Bedingung stimmen zwei solcher Fune-
tionen, die verschieden gebildet sind, fiir alle Werthe der GroBen a,,
dy .. . a, iiberein? Diese Frage ist gleichwerthig mit der folgenden:
Wann ist eine solche GroBe fiir alle Werthe von ay, a,, ...a,
gleich Null? Dies ist dann und nur dann der Fall, wenn der
fragliche Ausdruck vermoge der mit (1) bezeichneten Relationen
identisch zu Null gemacht werden kann. Es ist wohl kaum
hinzuzufiigen, daB der Begriff ,identisch“ hier nicht in dem sonst
in der Algebra iiblichen Sinn, sondern nur seinem rein logischen
Inhalt nach zu nehmen ist.

Der Beweis der aufgestellten Behauptung ergiebt sich daraus,
daB jeder durch Addition und Multiplication gebildete Ausdruck
mit Hilfe der Gleichungen (1) geordnet werden kann, und daf der
geordnete Ausdruck nach dem Cartesischen Satz nicht fiir alle





