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Nachrichten 
von der 

Königlichen Gesellschaft der Wissenschaften 
und der 

Georg-Augusts - Universität 
zu Göttingen. 

30. Januar. 1889. 

Königliche Gesellschaft der Wissenschaften. 

Sitzung den 5. Januar. 

de Lag a r de kündigt einen Aufsatz des Herrn Prof. A. Er man in Berlin, Kor­
resp. der Gesellschaft an: »Ueber die Sprache des Papyrus Westcas«. 

K 1 ein legt von Herrn Dr. Hil bert in Konigsberg i. Pr. vor: »Zur Theorie der 
algebraischen Gebilde. Zweite Note., 

Schwarz legt von Herrn Dr. O. Hölder vor 
1. »Bemerkung zur Quaternionentheorie«. 
2. »Ueber einen Mittelwerthssatz«. 

Sauppe legt einen Aufsatz von Herrn Prof. Ignazio Guidi in Rom, Korresp. 
der Gesellschaft, vor: »Le traduzioni dal Copto«. 

Zur Theorie der algebraischen Ge bilde. 
(Zweite Note) 1). 

Von 

David Hilbert. aus Königsberg in Pr. 
Vorgelegt von Fe 1 i x K 1 ein. 

In einer vor kurzem unter gleichem Titel veröffentlichten Mit­
theilung ist von mir ein Princip entwickelt worden , dessen Kraft 
sich vornehmlich da bewährt hat, wo es auf den Nachweis der 
Endlichkeit gewisser Systeme von algebraischen Formen an­
kommt. Aber die Anwendbarkeit desselben ist auf derartige Fra­
gen keineswegs beschränkt und die vorliegende Note soll zeigen, 

1) Vgl. 1888 S. 450 ff. 
Nachrichten von der K. G. d. W, zu GöUingen. 1889, Nr. 2. 3 
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wie der in jener ersten Mittheilung dargelegte Gesichtspunkt ins­
besondere zu einer einheitlichen und übersichtlichen Behandlung 
der charakteristischen Zahlen (Dimension, Ordnung, Ge­
schlechter, Rang, etc.) eines algebraischen Gebildes führt. 

Sind Au, A12 , ••• , A,111 gegebene ganze Funktionen der n ho­
mogenen Variablen x1, x2, ••• , x,., so besitzt nach Theorem III das 
System von l Gleichungen 

Aal xl + .A.-2 X2 + ... + .A.,_ x... = o ( s = 1, 2 , . . . , l) 

eine endliche Zahl p von Lösungen 

Xt = X,1, X 1 = X,2 , ••• , X, = Xtp (t = 1, 2, ... m) 

von der Eigenschatt, daß jedes andere jenen Gleichungen genü­
gende Funktionensystem sich in die Gestalt 

X,= Y1 Xt1 + Y2 X,2 + ... + Y„Xtp(t = 1, 2, .. . m) 

bringen läßt, wo Yi, Y2 , ••• , YP ebenfalls ganze und homogene 
Funktionen jener n Variablen sind. Unter den p Lösungssystemen 
möge überdies keines vorhanden sein, welches bereits aus den übri­
gen durch lineare Combination erhalten werden kann. Wir be­
trachten nunmehr die Formen xll, xl2, , , , , x ... p als bekannt und 
bestimmen für die Gleichungen: 

yl X,i + ~ X,2 + ... + yp xtp = 0 (t = 1, 2, ... ' m) 

das volle System von Lösungen 

Y, = Y.11 Y. = Y.2, . . . , Y, = Y,q (s = 1, 2, ... , p) 

derart, daß jede andere Lösung die Gestalt 

Y, = zl Y,i + z2 Y:2 + ... + zq Y,q (s = 1, 2, ... ' p) 

annimmt. Wenden wir dann dasselbe Verfahren auf das Glei­
chungssystem 

zl Y.1 + Z2 Y.2 + ... + zg Y,q = 0 (s = 1, 2' ... 'p) 

an, so gilt der folgende für unsere weiteren Entwickelungen grund• 
legende Satz : 

Theorem V. Ist ein Gleichungssystem von der Gestalt 

.A.11 X1 + A,2 X,+ ... + A.- X,.. = 0 (s = 1, 2, ... , l) 

vorgelegt, so führt die Aufstellung der Identitäten zwischen den 
Lösungen desselben zu einem zweiten Gleichungssystem von der­
selben Gestalt; aus diesem abgeleiteten Gleichungssysteme ent­
springt in gleicher Weise ein drittes u. s. f. Das s o g e kenn­
zeichnete Verfahren erreicht stets ein Ende und 
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~war spät e s t e n s n a eh n - m a li g er Anwendung, d. h. in 
der Reihe jener Gleichungssysteme tritt an nter oder bereits an 
früherer Stelle ein Gleichungssystem auf, welches keine Lösung 
mehr besitzt. 

Der Beweis dieses Theorems ist nicht ohne Mühe. Durch ge­
eignete Behandlung des vorgelegten Gleichungssystems gelingt es 
dem abgeleiteten Gleichungssystem eine solche Gestalt zu erthei­
len, daß nur eine beschränkte Zahl der Lösungen dieses abgelei­
teten Gleichungssystems sämmtliche n Variablen enthält, während 
dagegen alle übrigen Lösungen von einer jener n Variablen etwa 
von x„ frei sind. Durch Fortführung dieser Schlußweise und unter 
Benutzung des Theorems II. wird der Fall von n Variablen auf 
denjenigen von n -1 Variablen zurückgeführt. Um nun die Rich­
tigkeit des Theorems für den Fall n = 2 zu erkennen, legen wir 
die Gleichung 

A.1 X1 + A2 X2 + ... +AmXm = 0 

zu Grunde, wo A1 , A.2, ••• , Am gegebene binäre Formen von der pten 

Ordnung sind. Das volle Lösungssystem dieser Gleichung besteht 
genau aus m -1 Lösungen. Ist nämlich irgend ein System von 
m Lösungen jener Gleichung vorgelegt, so lassen sich offenbar 
stets m binäre Formen Y1, Y2, ••• , Ym von der Art finden, daß die 
Relationen 

Yi xsl + y2 xs2 + ... + ym xam = 0 (s = 1, 2, ... , m) 

identisch erfüllt sind. Bezeichnen wir nun die den ..Formen X 111 
X2t, ••• , Xmt gemeinsame Ordnung mit 1rt und bestimmen einen Li­
nearfaktor von Ym , so lassen sich unter der Voraussetzung 

1't'1 < 7t2 < • • • < 7tm 

die m Lösungen der gegebenen Gleichung durch lineare Combina­
tion derart umgestalten, daß jener Linearfaktor in dem für die 
neuen Lösungen gültigen Relationensystem überall unterdrückt 
werden kann. Wird das hiedurch angedeutete Verfahren solange 
wiederholt, bis sich die Linearfaktoren der Form Ym erschöpft haben, 
so ergiebt sich schließlich ein Relationensystem von der Gestalt 

Xam = a1 X31 + a2 X82 + •,, + am-l Xsm-t, (S = 1, 2, • •,, m) 

wo a1, a2, ••• , am-i wiederum binäre Formen sind. In Folge dieses 
Ergebnisses ist die mte Lösung überflüssig und man erkennt so­
mit, daß die Lösungen eines vollen Lösungssystems der vorgelegten 
Gleichung sich stets durch gewisse m -1 Lösungen ersetzen las­
sen , welche durch kein weiteres Relationensystem unter einander 

3* 
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verknüpft sind d. h.: Bereits das aus der ursprünglichen Gleichung 
abgeleitete Gleichungssystem ist ein solches, welches keine Lösung 
besitzt. Es bietet keine Schwierigkeit, dieses Ergebniß auf den 
Fall mehrerer Gleichungen zu übertragen, deren Coe:fficienten bi­
näre Formen von beliebigen Ordnungen sind. Das vorhin ausge­
sprochene Theorem ist alsdann in der That für das binäre For­
mengebiet und damit zugleich allgemein als richtig erkannt. 

Zur Erläuterung des Theorems diene das Beispiel der Norm­
curve im vierdimensionalen Raume. Die ursprüngliche Gleichung 
ist in diesem Fall von der Gestalt 

ff 1 xl + r.p2 x2 + ... + r.p6 x6 = o, 

wo r.p 1 , r.p2, ••• , r.p6 die 6 in der ersten Note angegebenen quadrati­
schen Formen der 5 homogenen Coordinaten bedeuten. Das abge­
leitete Gleichungssystem enthält 8 Gleichungen und schon das 
dritte aus 3 Gleichungen bestehende Gleichungssystem besitzt keine 
Lösung. 

Von principieller Bedeutung ist die Behandlung der Gleichung 

xl xl + x2 x2 + ... + x„ X,. = 0 ; 

dieselbe giebt nämlich einen Beleg für den Fall, in welchem das 
in Rede stehende Verfahren thatsächlich erst nach n maliger An­
wendung ein Ende erreicht. 

Um im Folgenden eine kürzere Ausdrucksweise zu ermögli­
chen und überdies leichter an bekannte Anschauungen und geläu­
fige Begriffe ankniipfen zu können , nehmen wir an, daß an Stelle 
eines Systems von Gleichungen nur eine einzige Gleichung von 
der Gestalt 

Ml xl + M2 x2 + ... + M.,. x ... = o 

zu Grunde liege, wo M1, M2 , ••• , M.,. gegebene Formen der n ho­
~ogenen Variablen x1, x2, ••• , x„ mit bestimmten Zahlencoe:fficienten 
und von beliebigen Ordnungen sind. Wir bestimmen zunächst die 
Zahl der linear von einander unabhängigen Formen M von der 
eten Ordnung, welche Ausdrücken von der Gestalt 

M= M1 X1 +M2 X2 + .. . +M.,.X,,. 

identisch gleich sind. Es ist zu diesem Zwecke nur nöthig die 
Gesammtzahl der in X1 , Xv ... , X,,. auftretenden bei der Darstel­
lung verfügbaren Coe:fficienten um die Zahl der von einander un­
abhängigen Formensysteme X1 , X2, ••• , X,,. zu vermindern , für 
welche der obige Ausdruck M von der eten Ordnung identisch ver­
schwindet. Die letztere Zahl hängt, wie die Fortsetzung der an­
gedeuteten Schlußweise zeigt , von der Ordnung der in der Reihe 
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der abgeleiteten Gleichungssysteme als Coefficienten auftretenden 
Formen ab. Vermindern wir nun die Zahl der überhaupt vorhan­
denen linear unabhängigen Formen der eten Ordnung um die eben 
berechnete Zahl der in obiger Gestalt darstellbaren Formen M, so 
ergiebt sich die Zahl der linear von einander unabhängigen Bedin­
gungen, welchen die Coefficienten einer Form der ~ten Ordnung ge­
nügen müssen, damit dieselbe in obige Gestalt gebracht werden 
kann. Die auf diese Weise berechnete Zahl wird, falls die Ord­
nung ~ oberhalb einer bestimmten Grenze liegt, durch eine und 
dieselbe ganze Funktion von e ausgedrückt. Da diese Funktion 
x(e) für ganzzahlige Argumente nothwendig ganze Zahlen darstel­
len muß , so können wir setzen 

X(~) = Xo + X1 (i) + Xa (t) + · • · + Xv G), (v < n) 

wo (i), (D, ... , (:) die Binomialcoefficienten und Xo, x11 x2, 

... , Xv bestimmte von der Natur der Formen M1 , M2 , ••• , Mm 
abhängige und daher für die gegebene Gleichung charakteristische 
ganze Zahlen sind. Der eben angedeutete Beweis für die Existenz 
der Funktion x.(~) beruht, wie man sieht, wesentlich auf Theorem V. 

Die folgenden Auseinandersetzungen lehnen an diejenige Be­
zeichnungsweise und Begriffsbestimmung an, welche L. Kronecke r 
in der von ihm begründeten und neuerdings systematisch ausge­
bildeten Theorie der Modulsysteme 1) anwendet. Doch sei im Vor­
aus bemerkt, daß im Unterschiede zu den von L. Kronecker 
behandelten Fragen in unserer Untersuchung die Homogenität 
der Moduln 'Jrl0 M2 , ••• , Mm bezüglich der Variablen X11 x2, ••• , xn 

eine wesentliche und nothwendige Voraussetzung bildet. Die bis­
herigen Ergebnisse werden nunmehr, wie folgt, zusammengefaßt: 

Die Coefficienten einer Form von einer g·enügend 
hohen Ordnung e in den n homogenen Variablen x1, 

x2, ••• , x„ müssen genau x(e) von einander unabhängige 
lineare Bedingungen erfüllen, damit die Form nach 
einem gegebenen Modulsystem (M11 M2, ••• , M,,.) con­
gruen t Null sei. Die ganze Funktion x.(~) heiße die 
,,charakteristische Funktionu jenes Modulsystems. 

Wir wenden diese allgemeinen Betrachtungen zunächst auf 

1) L. Kronecker, Crelle's Journal, Bd. 92, pag. 70-122, Bd. 93, pag. 365 
-366, Bd. 99, pag: 329-371, .Bd. 100, pag. 490-510. Berliner Sitzungsberichte, 
1888 pag. 249-258, 263-281, 331-352, 379-396, 615-648. Vergl. ferner: 
R. Dedekind und H. Weber, Crelle's Journal, Bd. 92, pag. 181-235, sowie 
J. Molk, Acta. ma.thematica Bd. 6, pag. 50-165. 
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den vorhin ausführlicher besprochenen Fall an , in welchem Mi, 

M2, ••• , M,,,. sämmtlich binäre Formen von der pten Ordnung sind. 
Das volle Lösungssystem der Gleichung besteht dann unseren frü­
heren Auseinandersetzungen zufolge aus m-1 von einander unab­
hängigen Lösungen und wenn wir die Ordnungen dieser m -1 Lö­
sungen bezüglich mit 7ti, 1t2, ... , 1tm-i bezeichnen, so ergiebt sich 
für die charakteristische Funktion des Modulsystems (Mi, M2, ••• , 

Mm) der constante Werth 

x(e) = Xo = p-1t1-1t2-· • .-1rm-1• 

Besitzen nun die Formen M 11 M2, ••• , Mm nicht sämmtlich 
einen gemeinsamen Theiler, so läßt sich offenbar jede Form M 
von der Ordnung e > 2 p - 1 in die Gestalt 

M = Ml xl + M2 X2 + • • • + Mm xm 

bringen und die charakteristische Funktion ist daher nothwendig 
Null. Auf diese Weise gewinnen wir den folgenden Satz : 

Besitzen die binären Formen M1, M2 , ••• , Mm von 
der pten Ordnung nicht sämmtlich einen gemeinsamen 
Faktor, so besteht das volle Lösungssystem der 
Gleichung 

Ml xl + M2 x2 + ... + Mm xm = 0 
j e d er zeit aus m -1 v o n ein an d e r u n abhängigen L ö­
s u n gen von der Eigenschaft, dafä die Summe der Ord­
nungen dieser L ö s u n g e n der Z a h 1 p genau g l e i c h k o mm t. 

Diesen Satz hat bereits F. Meyer 1) vermuthet und als Po­
stulat bei seinen Untersuchungen über reducible Funktionen ver­
wendet. 

Was das Beispiel der N ormcurve im vierdimensionalen Raume 
betrifft, so. ergiebt übereinstimmend die direkte Ueberlegung sowie 
die in der ersten Note an der betreffenden Stelle ausgeführte 
Rechnung für die charakteristische Funktion des Modulsystems 
( <?1, Cf 2, ••• , cp6) den W erth 4 e + 1. 

Das :Modulsystem (x11 x2, ••• , x") besitzt offenbar die charak­
teristische Funktion Null und das Gleiche gilt für jedes Modulsy­
ste:tn, welches irgend n Formen mit nicht verschwindender Resul­
tante enthält. Für das ternäre Formenge biet vergleiche man den 
am Schlusse der ersten Note ausgesprochenen Satz. 

Man sieht leicht ein , wie die gekennzeichnete Methode sich 
für die Theorie der algebraischen Gebilde verwenden läßt. Ist 
beispielsweise im dreidimensionalen Raume eine Curve oder ein 

1) Mathematische Annalen, Bd. 30, pag. 38. 
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System von Curven und Punkten gegeben , so kann man nach 
einem in der ersten Note bewiesenen Satze durch dieses Gebilde 
stets eine endliche Zahl von Flächen 

M1 = Ü, M2 = Ü, . , , , Mm = Ü 

solcher Art hindurchlegen, daß jede andere das Gebilde enthaltende 
Fläche durch eine Gleichung von der Gestalt 

X1 M1 + X2 M2 +,,, + XmM,n = Ü 

ausgedrückt wird. Es ist somit offenbar, daß jedem algebraischen 
Gebilde ein Modulsystem (Mi, M2 , ••• , Mm) und durch dessen Ver­
mittelung eine bestimmte charakteristische Funktion x(~) zugehört. 
Die letztere Funktion giebt dann an, wie viele von einander un­
abhängige Bedingungen eine Fläche von der oberhalb einer gewis­
sen Grenze liegenden Ordnung e erfüllen muß , damit sie das be­
treffende Gebilde enthalte. So hat die charakteristische Funktion 
einer doppelpunktslosen Raumcurve von der Ordnung p. und dem 
Geschlecht p den Werth 1) 

x(e) = 1-p + p.t 

Entsprechende Thatsachen gelten für beliebige algebraische 
Gebilde im n dimensionalen Raume. Findet man nämlich für die 
charakteristische Funktion eines algebraischen Gebildes den W erth 

X m = Xo + X1 CD + X2 (t) + ' ' ' + Xv G) l 

so ist stets v die Dimension und Xv die Ordnung des Gebildes, 
während die übrigen Coefficienten Xo, x1, ••• , Xv-i mit den von M. 

N o et her 2) definirten und behandelten Geschlechtszahlen des Ge­
bildes in engem Zusammenhange stehen. Inwiefern umgekehrt ein 
Modulsystem durch die Gesammtheit der W erthsysteme bestimmt 
ist, welche die einzelnen Moduln gleichzeitig zu Null machen, ist 
eine Frage, welche erst durch eine systematische und alle mög­
lichen Ausnahmefälle umfassende Untersuchung des Noetherschen 
Fundamentalsatzes für beliebige Dimensionenzahl eine befriedigende 
und allgemeingültige Beantwortung finden kann. 

Wir kehren zur Betrachtung der allgemeinen Modulsysteme 
zurück und stellen einen auf die charakteristische Funktion der­
selben bezüglichen Satz auf. Sind irgend zwei Modulsysteme 
(M1, M2, ••• , Mm) und (L11 L2, ••• , Li) gegeben, so stelle man 
zunächst für die Gleichung 

1) Vergl. M. No e ther, Crelle's Journal Bd. 93, pag. 295. 
2) Mathematische Annalen Bd. 2 und 8. 
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M1X1+M2X2+• .. +MmXm = L1Y1+L2Y2+•• .+L,Yi 
das volle Lösungssystem 

xl = X1a, x2 = X2s, '' ., xm = xmsl 
yl = Yisi y2 = ~d ' ' 'l 17; - Yi, 

(s = 1, 2, ... , k) 

auf und bilde dann vermöge der Formeln 

K, = Ml xl8 + M2 x28 + • • • + Mm xm8 = Ll yu + L2 y28 + ' ' ' + Li Yi, 
(s = 1, 2, ... , k) 

das sogenannte "kleinste enthaltende" Modulsystem (Ki, K'J, ... , Kk). 
Andererseits erhält man durch Zusammenstellung der einzelnen 
Moduln der beiden gegebenen Systeme das „größte gemeinsame" 
Modulsystem 1) 

(M11 M2 , ••• , Mm, L 11 L2 , ••• , Li) = (G11 G2', ••• , Gg). 

Es läßt sich nun allgemein zeigen , daß zwischen den charakteri­
stischen Funktionen xM und XL der beiden gegebenen Modulsysteme 
und den charakteristischen Funktionen XK und Xa der beiden abge­
leiteten Modulsysteme die einfache Relation 

XM + XL = XK + Xa 
besteht , d. h. : 

Die Summe der charakteristischen Funktionen 
zweier beliebiger Modulsysteme ist gleich der Summe 
der charakteristischen Funktionen für das kleinste 
enthaltende und das grö!He gemeinsame Modul­
system. 

Um die Bedeutung dieses Satzes zu erläutern, wenden wir 
denselben auf die Lösung einer Aufgabe aus der Theorie der Raum­
curven an. Es mögen zwei Raumcurven ohne Doppelpunkte von 
den Ordnungen p,1 , p,2 und beziehungsweise von den Geschlechtern 
p1 , p 2 den vollständigen Durchschnitt zweier Flächen K1 = O, 
K2 = 0 von der Ordnung k1 , k2 bilden. Die den beiden Raum­
curven eigenen Modulsysteme seien (M1 , M2 , ••• , ll!lm) und (L1, 

L,, ... , L1). Das kleinste enthaltende Modulsystem ist offenbar 
(K11 K2) und das größte gemeinsame Modulsystem (M1• M2, ••• , Mm, 
Li, L2 , ••• , L1) wird geometrisch durch diejenigen Punkte darge­
stellt, welche beiden Raumcurven gemeinsam sind. Die Zahl 

1) Vergl. betreffs der Begriffsbestimmung: L. Kronecke r, Crelle's Journal 
Bd. 92, pag. 78 sowie R. De d e k in d und H. W e b e r, Crelle's Journal Bd. 92, 
pag. 197. 
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dieser Punkte sei g. Die in Betracht kommenden charakteristi~ 
sehen Funktionen sind 

xM = 1-pl + f-11e, xK = -½k:k2-½k1k:+2k1!k2+k1k2t 
XL = 1-P2 + f-12 e' Xa = g ' 

und die Anwendung unseres Theorems ergiebt daher für die Zahl 
der den beiden Raumcurven gemeinsamen Punkte den W erth 

g = ½k~ k2 + ½k1 k!-2 k1 k2 -p1 -p2 + 2. 

In den citirten Untersuchungen über Modulsysteme werden 
noch eine Reihe weiterer für die Theorie der Modulsysteme fun­
damentaler Begriffe erörtert. Die dort gegebenen Definitionen sind 
nach geringfügigen Modifikationen auch für die hier betrachteten 
Systeme h o m o g e n er Moduln gültig. So heißen bei unserer Auf­
fassung zwei Modulsysteme „aequivalent", wenn von einer gewis­
sen Ordnung in den Variablen an eine jede bezüglich des einen 
Modulsystems der Null congruente Form auch stets beziiglich des 
anderen Modulsystems der Null congruent ist. Zwei aequivalente 
Modulsysteme haben daher nothwendig dieselbe charakteristische 
Funktion, und im besonderen sind alle Modulsysteme mit der cha­
rakteristischen Funktion Null der Einheit aequivalent. 

Zum Schlusse sei noch auf die von Ca y l e y, G. Salm o n, S. 
R ob e r t s und A. Br i 11 ausgebildete Theorie der sogenannten 
beschränkten Gleichungssysteme 1) hingewiesen, da insbesondere 
für diesen Zweig der Algebra uns.er Begriff der charakteristischen 
Funktion eine wirksame Fragestellung sowie einen einheitlichen 
Gesichtspunkt liefert. Ist beispielsweise eine Raumcurve gegeben 
und betrachten wir irgend drei dieselbe enthaltende Flächen f = O, 
g = 0, li = 0 beziehungsweise von den Ordnungen r, s, t, so ist 
die Zahl der Schnittpunkte dieser Flächen, welche außerhalb jener 
Raumcurve liegen , offenbar gleich der charakteristischen Funktion 
des Modulsystems (f, g, h), vermindert um die charakteristische 
Funktion der Raumcurve. Diese Schlußweise führt in der That 
zu einem verallgemeinerungsfähigen Beweise für den bekannten 
Satz , wonach die Zahl der durch eine gemeinsame Raumcurve ab­
sorbirten Schnittpunkte jener drei Flächen gleich p. (r + s + t) - p 
ist , wenn p. die Ordnung der Raumcurve und p eine andere jener 
Raumcurve eigene Constante, den sogenannten Rang derselben, be­
deutet. 

1) Vergl. G. Salmon, Algebra der linearen Transformationen, Vorlesung 22 
und 23, sowie den bezüglichen Litteraturnachweis. 
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Die weitere Aufgabe der im Vorstehenden entwickelten Theorie 
besteht nunmehr in der wirklichen Durchführung der den oben an­
gedeuteten Anzahlbestimmungen zu Grunde liegenden algebraischen 
Processe. 

B e merk u n g zur Quaternionen t h eo r i e. 
Von 

O. H6lder. 
Vorgelegt von H. A. S eh war z. 

Für die Grundoperationen im Gebiete der reellen und der ge­
wöhnlichen complexen, in der Form x + yi enthaltenen Größen be­
stehen die Gesetze : 

a+b=b+a 
( a + b) + c = a + (b + c) 

(1) a. b = b. a 
(ab). c = a(bc) 

( a + b) . c = ac + bc. 

Die umgekehrten Operationen, Subtraction und Division kön­
nen hier übergangen werden. Das angegebene System ist v o 11-
s t ä n d i g. Bedeuten nämlich a1 , a2, ••• a„ ganz willkürlich ver­
änderliche Größen , und bildet man aus diesen unter Hinzunahme 
von einigen bestimmt gegebenen reellen Größen durch mehrfache 
Anwendung der Addition und Multiplication neue Größen, welche 
also Functionen von a1 , a2, ••• a„ sind, so ist die fundamentale 
Frage die: Unter welcher Bedingung stimmen zwei solcher Func­
tionen, die verschieden gebildet sind, für alle W erthe der Größen ai, 
a21 ••• a„ überein? Diese Frage ist gleichwerthig mit der folgenden : 
Wann ist eine solche Größe für alle W erthe von a1 , a2, ••• a„ 
gleich Null? Dies ist dann und nur dann der Fall, wenn der 
fragliche Ausdruck vermöge der mit (1) bezeichneten Relationen 
i den t i so h zu Null gemacht werden kann. Es ist wohl kaum 
hinzuzufügen, daß der Begriff "identisch" hier nicht in dem sonst 
in der Algebra üblichen Sinn , sondern nur seinem rein logischen 
Inhalt nach zu nehmen ist. 

Der Beweis der aufgestellten Behauptung ergiebt sich daraus, 
daß jeder durch Addition und Multiplication gebildete Ausdruck 
mit Hilfe der Gleichungen (1) geordnet werden kann, und daß der 
geordnete Ausdruck nach dem Cartesischen Satz nicht für alle 




