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450 Da.vid Hilbert, 

Zur Theorie der algebraischen Ge bilde. 
(Erste Note.) 

Von 

David Hilbert aus Königsberg in Pr. 

(Vorgelegt von F. K 1 ein.) 

Die vorliegende Untersuchung nimmt die Theorie der alge­
braischen Gebilde von einem Gesichtspunkte aus in Angriff, wel­
cher im wesentlichen durch die beiden folgenden Theoreme gekenn­
zeichnet wird : 

Theorem I. Ist 

91, 92, <?s, • • • 
eine unendliche Reihe von Formen der n Veränderlichen x1 , x 2 , ••• x,., 
so giebt es stets eine Zahl m von der Art, daß eine jede Form je­
ner Reihe sich in die Gestalt 

9 = (1,l 91 + rJ.2 <f)2 + • 0 0 + rJ.rA 9m 
bringen läßt, wo 0.1, a.2, ••• , a.m geeignete Formen der n V eränder­
lichen x 11 x2, ••• , x„ sind. 

Die Ordnungen der einzelnen Formen der Reihe , sowie ihre 
Coefficienten unterliegen keinerlei Beschränkungen. Denken wir 
uns die Coefficienten der vorgelegten Formen c.p 1 , 92 , 9

8
, ••• als 

Zahlen eines bestimmten Rationalitätsbereiches (resp. Integritäts­
bereiches), so gehören die Coefficienten der Formen a.1 , a.2, ••• , a.,. dem 
nämlichen Bereiche an. Für das unäre, binäre und ternäre Formen­
gebiet folgt die Richtigkeit unseres Satzes ohne Schwierigkeit 
und direkt. 

Theorem II. Sind 

<f)1, <?2 , 'Ps, • • • 
tl>1, 42, 4s, 

P1, P2, Ps, • • • 
r unendliche Reihen von Formen der n Veränderlichen x11 x2, ••• , x .. , 
so giebt es stets eine Zapl m von der Art, daß für jeden Index k 
ein Gleichungssystem von der Gestalt 

<p,. = (ll 91 + (l2 <f2 +. • • + (lm <fm, 

91: = a1'fi +a242+ • • +a.,.qi,,., 
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erfüllt ist, wo a1, a2, • • • , am geeignete Formen der n V eränder• 
liehen Xi, x2 , ••• , x" sind. 

Das Theorem II geht für r = 1 in Thorem I über. Zunächst 
beweisen wir das Theorem II für Formen von n Veränderlichen 
unter der Voraussetzung , daß Theorem I für dieselbe Zahl von 
Veränderlichen bereits als richtig erkannt ist. Der Einfachheit 
halber betrachten wir nur zwei Formenreihen 

<?1, 92, <fs, • • • 
'f 1, ~2, Ys, • • • 

Nach Theorem I läßt sich eine Zahl m1 finden von der Art, daß 
für jeden Index k eine Gleichung von der Gestalt 

<fk = Clkl 91+a„292 + • • • + (J.,l:ml 1'm1' 

besteht. Bilden wir nun die Formen 
\J! = t!J -Cl ,!, -Cl W -• • •-rJ.. W 

k Tl: kl 'fl k2 1 2 l:ml I ml' 

so läßt sich wiederum für die Reihe : 
'1!"'1' w2, qi·s, • • • 

_eine Zahl m angeben, so daß für jeden Index k 
W,., = Al\li•1+A2\li•2+•••Amlfm 

gesetzt werden kann, wo A 1, A 2 , ••• , A,,,.. geeignete Formen sind. 
Man erkennt leicht, daß diese Zahl m zugleich eine solche ist, wel• 
ehe im Sinne des Theorems II den beiden ursprünglichen Formen• 
reihen zugehört. 

Die Richtigkeit des Theorems II für die Variablenzahl n zieht 
die Gültigkeit des Theorems I für die Variablenzahl n + 1 nach 
sich. Um diese Behauptung einzusehen, sei 

f1, f2, fs, · · · 
eine Reihe von Formen mit den n + 1 Veränderlichen x1 , x2 , ••• , x,.+1 ; 

f1 sei von der Ordnung r. Da eine lineare Transformation sämmt­
licher Formen der Reihe freisteht, so darf vorausgesetzt wer­
den, daß in der Form f~ der Coe:fficient von x:+1 einen von Null 
verschiedenen Wert besitzt. Einem einfachen Gedankengange fol­
gend, setzen wir 

Ui, = f"+1+aJ1 = 9J:+4J,x„+i+· •• +p1,x:+; 
wo die Formen a„ sämmtliche n+ 1 Veränderliche, dagegen die 
Formen 9J:, y,.,, ... , pk nur noch die Veränderlichen x1, x2, ••• , x„ 
enthalten dürfen. Wenden wir nun Theorem II auf die r unend• 
liehen Formenreihen 

Cf 1, Cf 2, Cf s, 

41' '1'2, 4s, 
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an, so folgt daraus unmittelbar die Richtigkeit des Theorems I 
für die Formenreihe 

Uu 92, Ua, • • • 
und es bedarf nur noch des Ueberganges von dieser Formenreihe 
zu der ursprünglichen Formenreihe {11 f'2, f:,, . . . 

Die beiden Theoreme sind demnach ausnahmslos gültig, wie 
man auch die Formen der vorgelegten Reihen specialisiren mag. 
Man sieht zugleich, wie die wirkliche Berechnung der Zahl m aus­
führbar ist, sobald die zu untersuchenden Formenreihen durch ein 
gegebenes Gesetz festgelegt sind. 

Das Theorem I führt zum Beweise eines Satzes, welcher für 
die Invariantentheorie in höheren Formengebieten von entsprechen­
der Bedeutung ist, wie der bekannte Gordansche Fundamental­
satz für das binäre Formengebiet. Der Satz lautet: 

Ist ein beliebiges System von Grundformen mit 
beliebig vielen Veränderlichen (und Reihen von Verän­
derlichen) vorgelegt, so giebt es für dasselbe stets 
eine endli ehe Zahl von ganzen und rationalen In vari an­
te n (Combinanten, etc.), durch welche sich jede andere 
ganze und rationale Invariante in ganzer und ratio­
naler Weise ausdrücken läßt. 

Ordnen wir nämlich die Invarianten des Grundformensystems 
in eine unendliche Reihe 

i1, i2, is, .. • 
indem wir successive die Invariannten ersten, zweiten, dritten, etc. 
Grades in den Coe:fficienten der Grundformen construiren, so lehrt 
Theorem I, daß eine jede Invariante i sich durch eine endliche 
Zahl rn derselben in der Gestalt 

i = a1 i1 + a2 i2 + · • • + a,,. i..,. 
ausdrücken läßt, wo ai, a2, ••• , a,,. ganze homogene Funktionen der 
Coeflicienten der Grundformen bedeuten. 

Nehmen wir nun der kürzeren Ausdrucksweise wegen an, daß 
es sich nur um binäre Formen mit einer Variablenreihe handele 
und denken uns dieselben durch die lineare Substitution : 

xt = a1x~ + ß1x~, 
X2 = rl2:C~ + ß2X~ 

mit der Determinante 

P = ~ß2-a,ß1 
transformirt, so geht die obige Gleichung über in 
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wo p, p 1, p2 , ••• , p,,. bezüglich die Gewichte der Invarianten i , i1, 

i2, ••• , i,,. und a:, a~, ... , a:,. die entsprechenden Funktionen der 
transformirten Coeffi.cienten sind. Wenden wir auf diese Identität 
p mal das Differentiationssymbol 

a2 a 
"1=-----

aal 0ß2 0(1.2 0ß1 
an, so wird 

i = 11 i1 + 12 i2 + • • • + Jm im, 

wo 11, 12, • • ., lm Invarianten des Grundformensystems sind. Wir 
unterwerfen diese Invarianten derselben Behandlung , wie vorhin 
die Invariante i und erhalten dadurch schließlich eine ganze und 
rationale Darstellung der Invariante i mit Hülfe der m Invarian­
ten i1' i2, • • ., im. 

Für das ternäre Formengebiet leistet das Di:fferentiationssymbol 

~ ~ ~ ~ 
A = --------+-------+ 

aa1oß2a1s aa1°ßsa12 aa2°ßs 011 aa.2oß101s 
as as 

+---------
OrJ.3 °ß1 °12 aas 0ß2 °r1 

den entsprechenden Dienst 1) etc. 
Aus den Theoremen I und II ergeben sich ohne Schwierigkeit 

die folgenden Theoreme : 
Theorem III. Sind .A., B, ... , H gegebene Formen der n 

Veränderlichen x1 , x2, ••• x,., so existirt stets eine endliche Zahl m 
von Formensystemen mit denselben Veränderlichen 

X = X1, X = X2, ••• , X = X"' 
Y = Yl, Y = Y2, • • •, Y = Ym 

W= w1, W= w2,. • ., W= w„ 
welche die Gleichung 

.A.X+BY+···+HW = o 
identisch befriedigen und zugleich die Eigenschaft besitzen , daß 
jedes andere jener Gleichung genügende Formensystem in die Gestalt 

X= (1.1 xl +a2X2 + • • • +a„X,,,., 
Y = (1.1 Yl + (1.2 Y2 + • • • + (J.m Ym 1 

1) Vergl. P. Go rdan 's Vorlesungen über Invariantentheorie Bd. II § 9 und 
F. Me rte n s: Ueber invariante Gebilde ternarer Formen. Sitzb. der kais. Akad, 
der Wiss. zu Wien. Bd. XCV. 



|00472||

454 David Hilbert, 

gebracht werden kann, wo man unter a1, a2, ••• , am ebenfalls For­
men der Veränderlichen Xi, x2, ••• , x„ zu verstehen hat 1). 

Die m Formensysteme bilden die vollständige Lösung der be­
trachteten Gleichung. Auch wenn mehrere Gleichungen von der 
in Rede stehenden Art gleichzeitig zu befriedigen sind, existirt 
stets ein volles Lösungssystem in dem entsprechenden Sinne. 

Th o re m IV. Sind A, B, ... , H ganze r(l.tionale Funktionen 
der p + q Veränderlichen x1, x 2, ••• , xP, u1 , u 2, ••• , ul], so existirt 
eine endliche Anzahl m von Formen U11 U2, ••• , U,,. der q V erän­
derlichen Ui, u2, ••• , ul], welche sämmtlich Ausdrücken von der Gestalt 

AX+BY+···+HW 

gleich sind und überdies die Eigenschaft besitzen, daß jede andere 
Form von derselben Eigenschaft durch die Formel 

u = Cll ul + Cl.2 u2 + • . ' + Cl.m um 

gegeben wird. Dabei sind X, Y, ... , W ganze rationale Funk­
tionen der Variablen x1, x2, ••• xp, u1 , u2, ••• , ul] und a1 , a 2, ••• , a,a 

Formen der q Veränderlichen u1 , ua, ... , uq. 
Das Theorem IV führt zu einem allgemeinen Satze über al­

gebraische Gebilde, welcher beispielsweise für das quaternäre For­
mengebiet folgende geometrische Deutung erhält: 

Durch eine gegebene Raumcurve läßt sich eine 
endliche Zahl m von Flächen 

91 = 0, 1'2 = 0, • • •, 9m = Ü 

hindurchleg en derart, daß je de andere die C ur ve ent­
haltende Fläche sich durch die Gleichung 

(l.l 91 + (l.21'2 + • • • + Cl,,. 1'm = 0 
darstellen läßt, wo unter a1 , a2: •• • , am, g_uaternäreFor­
men zu verstehen sind 2). 

Wir wenden uns wiederum zur algebraischen Invariantentheorie 
und verstehen nach bekannter Ausdrucksweise unter einer irredu­
ciblen Syzygie eine solche Relation zwischen den Invarianten des 
Grundformensystems, deren linke Seite nicht durch lineare Com­
bination Syzygien niederer Ordnungen erhalten wird. Es gilt dann 
der Satz: 

1) Dieser Satz ist von L. Kronecker in seinem Beweise für die Endlich­
keit des Systems der ganzen algebraischen Größen einer Gattung bereits implicite 
zur Geltung gebracht; vergl. Crelle's Journal Bd. 92, pag. 16. 

2) Vgl. betreffs der Fragestellung: G. Salm o n , Analytische Geometrie des 
Raumes, II, 79. 

八杉 晋
ハイライト表示
この Kronecker の「証明」はnon-constructive か否かチェックすること！
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Ein endliches System von Invarianten besitzt 
nur eine endliche Zahl von irreducibeln Syzygien. 

Als Beispiel diene das volle Invariantensystem von drei binä­
ren quadratischen Formen, welches bekanntlich aus 7 Invarianten 
und 6 Covarianten besteht. Für dieses System giebt es genau 14 
irreducible Syzygien. 

Zwischen den Syzygien ihrerseits bestehen lineare Relationen, 
welche wiederum selber unter sich linear abhängig sein können etc. 
Was die Fortsetzung des hiedurch eingeleiteten Verfahrens anbe­
trifft, so genüge an dieser Stelle ~er Hinweis auf das unten behan­
delte Beispiel der Normcurve vierter Ordnung. Offenbar fallen die 
so entspringenden Fragen in den Wirkungskreis des Theorems III 

Was die Theorie der Ausartungen algebraischer Formen an­
betrifft, so sprechen wir folgenden speziellen Satz aus : 

E s g i e b t e in e e n d l i c h e Anz a h 1 v o n g an z e n Funk t i o­
n e n der C oeffic i ente n einer alge br ais chen Gleichung, 
w e 1 c h e v er s c h w i n d e n , s ob a 1 d d i e G 1 e i c h u n g e in e g e­
wi s s e Zahl vielfacher Wurzeln erhält und aus wel­
chen s i c h e in e j e d e an de r e g an z e F unkt i o n von de r­
s e l b e n Eigenschaft in linearer Weise zusammen­
s et z e n 1 ä ß t. 

Sollen beispielsweise alle homogenen Funktionen der 5 Co:ffi­
cienten einer binären biquadratischen Form angegeben werden, 
welche verschwinden, sobald dieselbe ein volles Quadrat wird, so 
bedarf es dazu der 7 Coe:fficienten c0, c1, ••• , C6, der Covariante 
6ter Ordnung. Es läßt sich nämlich zeigen , daß jede Funktion 
von der verlangten Eigenschaft in die Gestalt 

ao Co + a1 c1 + •.. + a6 c6 

gebracht werden kann, wo ao, a1, ••• , a6 homogene Funktionen der 
5 Coe:fficienten der Grunform sind. 

Um im Sinne der oben dargelegten Principien ein sehr ein­
faches Beispiel wirklich durchzuführen, betrachten wir die Norm­
curve im vierdimensionalen Raume. Um dieselbe zu de:finiren, 
setzen wir die 5 homogenen Punktcoordinaten eines solchen Rau­
mes gleich biquadratischen Formen an , etwa: 

U1 = X!, 

u2 = x:x2 , 

u3 = x~x;, 
u., = x 1x!, 
U5 = x:. 

Die Diskussion dieses Gebildes ergiebt folgende Thatsachen: 
Nachru;hten von de:r K. G. d. W. zu Göttmgen. 1888, Nr.16. 42 
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Alle quinären Formen der Veränderlichen u1, u2, u3 , u4, u5, wel­
che nach Einführung der obigen Ausdrücke identisch für alle Werte 
von x1, x2 verschwinden, sind enthalten in dem Ausdruck 

wo 

a111 + a2<f2 + • • • + a6 <f6, 

<f1 = u1 us-u!' 
<f2 = u1u,-u2ua, 
'fs = U1 U5-U2U,1, 

r.p4 = u1 u5 -u!, 
" {f5 = u2us-usu,, 

r.p6 = us us -u!, 

zu setzen ist und a 1, a 2 , •••• , a 6 beliebige quinäre Formen sind• 
Zwischen den 6 angegebenen Formen bestehen folgende 8 Identitäten 

91 = us 91 -u2 'f2-u1 9s +u1 <f4 = 0, 
42 = U4<fi1 -Us<f12-U29s +u294 = 0, 
4s = Us 91 - Us 9s + U2 <fis = 0, 
4o1 = Us9;-u2 'f4 + u1 Cf's = 0, 
4s = U4 'f2 - Ua <fs + U1 96 = 0, 
1h = u5cp2-U4(fs + u2r.p6 = 0, 
Y1 = U4'fs-U4<fo1 +us9s-u296 = 0, 
Ys = Us'fs-U5<p,1+u*cps-Us<fi6 = 0. 

Alle anderen Identitäten zwischen den Formen cp1, 92 , ... , cp6 ha­
ben die Gestalt 

ß1 41 + ß2 1f 2 + • • • + ßs 7s = 0 , 
wo ß1, ß2 , ••• , ß8 irgendwelche quinäre Formen sind. Die 8 ange­
gebenen Identitäten sind wiederum durch folgende 3 Relationen 
verbunden 

U" 41-Us <"2-Us<h + U21Ps +u1 ?1 = 0, 

Us41-us1>a-u*7o1+ua 1h+u246+u2<h+u1?s = 0, 
Us 42 - U4 Ys + Us 96 + U2 Ys = 0. 

Dieselben sind identisch erfüllt, wenn man für 41 , y2, ••• , 4s die 
obigen Ausdrücke einsetzt. Jede andere Relation zwischen den 
Ausdrücken 71 , <h, ... , 78 läßt sich aus den 3 angegebenen in li­
nearer Weise zusammensetzen und zwischen den linken Seiten der 
letzteren findet keine weitere Identität mehr statt. 

Berechnet man aus diesen Thatsachen die Zahl der Flächen 
nter Ordnung, welche jene Normcurve enthalten, so ergiebt sich 
der Wert 
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n-l•n•n+1•n+2 n-2·n-l•n•n+1 
6• 1 · 2. 3. 4 - 8• 1- 2 · 3 · 4 + 

n-3•n-2•n-l•n 
+ 3• 1. 2. 3 .4 

n+1·n+2•n+3•n+4 
1.2.3.4 (4n+l); 

d. h. es sind 4n + 1 Bedingungen erforderlich, damit eine Fläche 
nter Ordnung des vierdimensionalen Raumes die N ormcurve ent­
hält. Dieses Ergebniß entspricht in der That der bekannten Ge­
schlechtszahl Null unserer Curve. 

Zur Weiterentwickelung der angeregten Fragen bedarf es 
der Verallgemeinerung des No et h er sehen Fundamentalsatzes 1) für 
Räume von beliebiger Dimension sowie einer eingehenden Unter­
suchung aller hierbei in Betracht kommenden Ausnahmefälle. An 
gegenwärtiger Stelle soll jedoch der Weg nicht näher bezeichne­
werden, welcher dem Verfasser zur Erreichung jenes Zieles geeigi 
net erscheint. 

Aus dem No et her sehen Theoreme lassen sich Folgerungen zie­
hen, welche vollkommen im Rahmen der oben entwickelten Gedan­
kenreihe bleiben und insbesondere zu den eingangs erörterten Theo­
remen in naher Beziehung stehen. Das einfachste Beispiel dieser 
Art ist der Satz : 

Bedeuten 9, qi, x drei ternäre Formen der nten 
Ordnung mit nicht verschwindender Resultante, so 
ist j e d e t er n ä r e Form l von der Ordnung m > 3n -2 
in der Gestalt: 

l = a~+ß~+rx 
darstellbar, wo a., ß, r ebenfalls ternäre Formen sind. 

Ostseebad Rauschen, den 6. September 1888. 

l) Vergl. M. No et her, Mathematische Annalen Bd. VI und XXX, sowie 
A. V o s s, Mathematische Annalen Bd. XXVII und L. Sticke 1 berge r, Mathe­
matische Annalen Bd. XXX. 




